首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio (ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front (ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting (WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer (MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.  相似文献   

2.
The seasonal response of surface wind speed to sea surface temperature(SST)change in the Northern Hemisphere was investigated using 10 years(2002-2011)high-resolution satellite observations and reanalysis data.The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation,with more positive correlation is stronger in the cold seasons than in the warm seasons.This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions.The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer.Additionally,the eddy-induced response of surface wind speed is stronger in winter than in summer,although the locations and numbers of mesoscale eddies do not show obvious seasonal features.The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer(MABL),modulated by SST perturbations.In the cold seasons,the stronger positive(negative)SST perturbations are easier to increase(decrease)the MABL height and trigger(suppress)momentum vertical mixing,contributing to the positive correlation between SST and surface wind speed.In comparison,SST perturbations are relatively weak in the warm seasons,resulting in a weak response of surface wind speed to SST changes.This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.  相似文献   

3.
Observations of current velocity, pressure, and temperature in the eastern Yellow Sea during January 10 to April 12, 1986, and geostrophic winds calculated from surface pressure distributions, are analyzed for a study of the synoptic band response of the Yellow Sea to the wintertime winds. Currents in shallow coastal waters along a straight portion of the coast are mostly downwind to the south. Along the northern coast sheltered by a large bay, the current is persistently northward. This could be the result of a domination by geostrophic currents associated with an offshore-directed density gradient which is known to form in areas around this location. In the Yellow Sea trough, strong upwind flows are found to follow closely surges in the north wind. Co-spectral analyses show that these events are driven by a longitudinal pressure gradient associated with the sea-level set-up along the west coast of South Korea under a prevailing north wind.  相似文献   

4.
The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of ~600 km and a southwestward phase speed of ~0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.  相似文献   

5.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

6.
Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E–75°E, 0°–10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.  相似文献   

7.
Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.  相似文献   

8.
The summer weather characteristics of the Grove Mountain, East Antarctica, are presented based on the data obtained by Chinese National Antarctic Expedition (CHINARE) in January 1999. The result shows that the pattern of daily variation of temperature and the prevailing wind direction in Grove is similar to that of Zhongshan Station. However, the daily range of temperature and strong wind frequency are much higher than those of Zhongshan Station. The change of wind direction is close to the weather system that impacted the Grove Mountain. The warm and wet air from northern parts often causes the precipitation. The clear weather appears when controlled by eastern winds in January.  相似文献   

9.
Typhoon Durian (2001),which formed over the South China Sea (SCS),was simulated by using the Weather Research and Forecasting (WRF) model. The genesis of typhoon Durian which formed in the monsoon trough was reproduced by numerical simulations. The simulated results agree reasonably well with observations. Two numerical experiments in which the sea surface temperature (SST) was either decreased or increased were performed to investigate the impact of the SST on the genesis of the ty-phoon. When the SST was decreased by 5℃ uniformly for all grids in the model,the winds calculated became divergent in the lower troposphere and convergent in the upper troposphere,creating conditions in which the amount of total latent heat release (TLHR) was low and the tropical cyclone (TC) could not be formed. This simulation shows the importance of the convergence in the lower tropo-sphere and the divergence in the upper troposphere for the genesis of the initial vortex. When the SST was increased by 1℃ uni-formly for all grids,a stronger typhoon was generated in the results with an increase of about 10 m s-1 in the maximum surface wind speed. Only minor differences in intensity were noted during the first 54 h in the simulation with the warmer SST,but apparent dif-ferences in intensity occurred after 54 h when the vortex began to strengthen to typhoon strength. This experiment shows that warmer SST will speed the strengthening from tropical storm strength to typhoon strength and increase the maximum intensity reached,while only minor impact can be seen during the earlier stage of genesis before the TC reaches the tropical storm strength. The results sug-gest that the amount of TLHR may be the dominant factor in determining the formation and the intensification of the TC.  相似文献   

10.
Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fields from SODA (Simple Ocean Data Assimilation) data spanning the period of 1950-1999. The coupled fields achieved the maximum correlation when the SST lagged SWS by one month, indicating that the SCS coupled system mainly reflected the response of the SST to monsoon forcing. Three significant coupled modes were found in the SCS, accounting for more than 80% of the cumulative squared covariance fraction. The first three SST spatial patterns from CSVD were: (Ⅰ) the monopole pattern along the isobaths in the SCS central basin; (Ⅱ) the north-south dipole pattern; and (Ⅲ) the west-east seesaw pattern. The expansion coefficient of the SST leading mode showed interdecadal and interannual variability and correlation with the Indo-Pacific warm pool (IPWP), suggesting that the SCS belongs to part of the IPWP at interannual and interdecadal time scales. The second mode had a lower correlation coefficient with the warm pool index because its main period was at intra-annual time scales instead of the interannual and interdecadal scales with the warm pools. The third mode had similar periods to those of the leading mode, but lagged the eastern Indian Ocean warm pool (EIWP) and western Pacific warm pool (WPWP) by five months and one year respectively, implying that the SCS response to the warm pool variation occurred from the western Pacific to the eastern Indian Ocean, which might have been related to the variation of Indonesian throughflow. All three modes in the SCS had more significant correlations with the EIWP, which means the SCS SST varied much more coherently with the EIWP than the WPWP, suggesting that the SCS belongs mostly to part of the EIWP. The expansion coefficients of the SCS SST modes all had negative correlations with the Nino3 index, which they lag by several months, indicating a remote response of SCS SST variability to the El Nifio events.  相似文献   

11.
mODUCnONTheSOuthChinaSea(SCS)isasend-enclosedoceanbasinlocatednearthewesternPeripheryofthePacificOcean.SpreadingfIDmtheeqUatorto20"Nands~ngzonallaboutl5'inlooptUde,theSCSlocatesbetweenthesouthChinacoastandtheInaritha6continent,andissurroundedbyInanislandcountries.Duringwinter,S0UthwwhmedngcoldSUrges,mwhfiedbytheSST,affectthepressure,tempethe,andwindfieldsneartheInaritimecontinent,andsomeInayeveninIluencetheS0uthernHdrispheremonsoon(Davids0netal.,1983).msuniqUegeOpophyoftheSCS…  相似文献   

12.
The interdecadal factors affecting the summer monsoon winds over Somalia and the South China Sea were studied. Global geopotential heights and wind velocity fields of the 850-hPa and 200-hPa pressure levels, as well as sea surface temperature anomaly data and correlation coefficients were analyzed. The monsoons over Somalia and the South China Sea were found to be two different monsoon systems, operating on different mechanisms and being affected by different ocean-atmosphere interactions. The intensity of the Asian subtropical summer monsoon is influenced by the intensity of the summer monsoon over Somalia in the month of June and by the intensity of the summer monsoon over the South China Sea in the months of June and July. The summer monsoon wind strength over Somalia is affected by regional factors, such as the heating of the Tibetan plateau, and by global mechanisms, such as the subtropical heat exchange with Antarctica. The summer monsoon over the South China Sea is affected by different ocean-atmosphere interactions. The Somalia and subtropical summer monsoons have wind blowing down the pressure gradient from area over ocean to that over land, like typical summer monsoons. The South China Sea summer monsoon has winds that blow down the pressure gradient from area over land to that over ocean. The South China Sea summer monsoon is affected by the Kuroshio Current off the east coast of Japan.  相似文献   

13.
Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.  相似文献   

14.
Both low clouds and elevated ducts are common phenomena in the oceanic atmosphere. Low clouds affect elevated ducts by changing the structure of atmospheric temperature and humidity. However, due to the limitation of met-ocean measurements, research on them is still scattered. This paper presents the distribution of elevated ducts and clouds over the central Western Pacific Ocean(WPO) based on Global Position System(GPS) sounding data and Himawari-8 satellite products from November 2015 to January 2016. Results show that the frequency of elevated ducts detected by ship-based GPS soundings was as high as 77% over the central WPO. The height and frequency of elevated ducts are closely related to the low clouds. If there are no clouds, the occurrence probability and mean base height of the elevated ducts are 14% and 730 m, respectively. By comparison, the occurrence probability and mean base height increase up to 24% and 1471 m, respectively, in the presence of cumulus(Cu) clouds, and 22% and 1511 m, respectively, in the presence of stratocumulus(Sc) clouds. Elevated ducts occur near the cloud top. The analysis of geopotential height and wind fields from the European Centre for Medium-Range Weather Forecasts(ECMWF) reanalysis dataset(ERA-interim) shows that the study area is covered by a strong and stable subtropical high, and slowly sinking dry air masses inside the subtropical high are above the moist boundary-layer air mass. The appearance and evolution of low clouds will adjust the temperature and humidity structure of the lower troposphere. If there are no clouds, the marine boundary layer(MBL) is the classic mixed boundary layer. Humidity gradient and subsidence inversion are formed atop the mixed layer. When low clouds are present, long wave radiation and entrainment atop clouds form a strong temperature inversion and humidity gradient, which strengthen elevated ducts. However, when Sc clouds are decoupled, a weaker temperature inversion and humidity gradient may occur between the surface mixed layer and subcloud layer, leading to a weak elevated duct atop the mixed layer.  相似文献   

15.
AN ENSO-LIKE OSCILLATION SYSTEM   总被引:4,自引:0,他引:4  
INTRODUCTIONElNi no SouthernOscillation (ENSO)istheinterannualinteractionofocean atmosphereinthetropical (especiallyequatorial)Pacific,andisconsideredtobethedominantmechanismoftheearth’sinterannualclimatechange.ThereareseveralparadigmsproposedforinterpretingENSO .Bjerknes’ (1 966,1 969)pio neeringworkvisualizedacloseassociationbetweenoceanandatmosphereandexplainedhowthedis turbancecoulddevelopthroughtheocean atmosphereinteraction .Heproposedapositivefeedbackmechanism .ButENSOisan…  相似文献   

16.
Mesoscale coupling between perturbations of mesoscale sea surface temperature(SST) and lowlevel winds has been extensively studied using available high-resolution satellite observations. However, the climatological impacts of mesoscale SST perturbations(SST_(meso)) on the free atmosphere have not been fully understood. In this study, the rectified ef fect of SST_(meso) on local climatological precipitation in the KuroshioOyashio Extension(KOE) region is investigated using the Weather Research and Forecasting(WRF)Model; two runs are performed, one forced by low-resolution SST fields(almost no mesoscale signals) and another by additional high-resolution SST_(meso) fields extracted from satellite observations. Climatological precipitation response to SST_(meso) is characterized mainly by enhanced precipitation on the warmer flank of three oceanic SST fronts in this region. The results show that the positive correlation between the 10-m wind speed perturbations and SST_(meso) is well captured by the WRF model with a reasonable spatial pattern but relatively weak strength. The addition of SST_(meso) improves the climatological precipitation simulated by WRF with a better representation of fine-scale structures compared with satellite observations. A closer examination on the underlying mechanism suggests that while the pressure adjustment mechanism can explain the climatological precipitation enhancement along the fronts and the relatively high contribution of the convective precipitation, other factors such as synoptic events should also be taken into consideration to account for the seasonality of the precipitation response.  相似文献   

17.
SST variations of the Kuroshio from AVHRR observation   总被引:1,自引:0,他引:1  
1 INTRODUCTION The Kuroshio Current (KC), being the western boundary current in the North Pacific subtropical gyre, is the second strongest current in the world af- ter the Gulf Stream and is famous as a strong and fast flow. KC plays an important role in…  相似文献   

18.
The South China Sea (SCS) is significantly influenced by El Niño and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Niño events. During and after the mature phase of El Niño, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of El Niño, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an El Niño year.  相似文献   

19.
A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observa-tions and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sink-ing branch of which on the cold flank of SSTF helps lower the stratus layer further to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrunk heavily with the smoothed SSTF. A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global warming.  相似文献   

20.
This study investigated the impact of sea surface temperature(SST)in several important areas of the Indian-Pacific basin on tropical cyclone(TC)activity over the western North Pacific(WNP)during the developing years of three super El Ni?o events(1982,1997,and 2015)based on observations and numerical simulations.During the super El Ni?o years,TC intensity was enhanced considerably,TC days increased,TC tracks mostly recurved along the coasts,and fewer TCs made landfall in China.These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Ni?o years.It indicates that super El Ni?o events play a dominant role in the intensities and tracks of WNP TCs.However,there were clear differences in both numbers and positions of TC genesis among the different super El Ni?o years.These features could be attributed to the collective impact of SST anomalies(SSTAs)in the tropical central-eastern Pacific and East Indian Ocean(EIO)and the SST gradient(SSTG)between the southwestern Pacific and the western Pacific warm pool.During 2015,the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced,resulting in fewer TCs than normal.In 1982,the EIO SSTA and spring SSTG showed negative anomalies,followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear.This intensified the conversion of eddy kinetic energy from large-scale flows,favorable for the westward shift of TC genesis.Consequently,anomalous TC activities during the super El Ni?o years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号