首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Observations of wind velocity and temperature fluctuations were made in the nocturnal surface inversion layer over a paddy field. A remarkable wave-like motion of about 8 min period was seen in horizontal wind speed and standard deviation of vertical wind velocity. In addition, fluctuations of horizontal wind speed and anticlockwise rotation of wind direction with a period of about 30 min were found by power spectral analysis. The phenomena persisted for more than 2 hours. Similar phenomena were also observed at a coastal site at a distance of about 10 km from the paddy field.  相似文献   

2.
Downward fluxes of turbulent kinetic energy have been frequently observed in the air layer just above plant canopies. In order to investigate the mechanism for such downward transport, analysis of observational data is attempted. Height-dependency of turbulent kinetic energy flux and turbulence statistics including higher order moments is represented as a function of a non-dimensional height z/H, where z is an observational height and H an average height of plant canopies. Downward fluxes and non-Gaussianity of wind velocity fluctuations are predominant just above plant canopies and decrease with increasing height. The downward flux is closely related to the high intensity of turbulence and the non-Gaussianity of wind velocity fluctuations, especially with a positive skewness in the longitudinal wind and a negative skewness in the vertical wind. The analysis method of conditional sampling and averaging is applied to the present observations. The results show that the predominance of the intermittent inrush phase over the intermittent ejection phase leads to the above-mentioned non-Gaussianity. Finally, a simple explanation is given in order to interpret the turbulent flow structure in the air layer near the plant canopies, which is associated with the downward energy transport process.  相似文献   

3.
The processes influencing turbulence in a deciduous forest and the relevant length and time scales are investigated with spectral and cross-correlation analysis. Wind velocity power spectra were computed from three-dimensional wind velocity measurements made at six levels inside the plant canopy and at one level above the canopy. Velocity spectra measured within the plant canopy differ from those measured in the surface boundary layer. Noted features associated with the within-canopy turbulence spectra are: (a) power spectra measured in the canopy crown peak at higher wavenumbers than do those measured in the subcanopy trunkspace and above the canopy; (b) peak spectral values collapse to a relatively universal value when scaled according to a non-dimensional frequency comprised of the product of the natural frequency and the Eulerian time scale for vertical velocity; (c) at wavenumbers exceeding the spectral peak, the slopes of the power spectra are more negative than those observed in the surface boundary layer; (d) Eulerian length scales decrease with depth into the canopy crown, then increase with further depth into the canopy; (e) turbulent events below crown closure are more correlated with turbulent events above the canopy than are those occurring in the canopy crown; and (f) Taylor's frozen eddy hypothesis is not valid in a plant canopy. Interactions between plant elements and the mean wind and turbulence alter the processes that produce, transport and remove turbulent kinetic energy and account for the noted observations.  相似文献   

4.
Temperature fluctuations in the stable air layer before and after sunset were measured at 4 heights within and above a wheat field. Large positive temperature fluctuations were frequently observed within the plant canopy. The standard deviations, skewness factors and flatness factors of temperature fluctuations within the canopy showed peculiar time variations, having remarkable positive skewness factors. The occurrence of large positive temperature fluctuations was probably related to the difference of temperature gradients below and above the observation height, i.e., these fluctuations frequently occurred when the temperature gradient above the observation height was greater than that below the observation height. Furthermore, the vertical mixing associated with the penetration of downdrafts from the air layer above the canopy was requisite for the occurrence of the phenomenon.  相似文献   

5.
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed ‘flushing’, that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.  相似文献   

6.
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations(period<1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances(1 min相似文献   

7.
The relationship between surface pressure fluctuations and the velocity field associated with turbulent coherent structures is examined for flow within and above a deciduous forest. Measurements were taken with tower-mounted sonic anemometer/thermometers at six heights, Lyman-alpha humidiometers at three heights, and a pressure sensor at the forest floor. We find a strong, near-linear relationship between the mean square turbulent velocity and the standard deviation of the high-pass-filtered pressure fluctuations. Lagged cross-correlations between vertical velocity fluctuations and those of pressure show maximum correlations of ± 0.5 but with a phase offset. Examination of surface pressure during the passage of coherent structures, which are characterized by a transition from ejection to sweep, reveals a period of overpressure about 20 s in duration roughly centered on the time of passage of the scalar microfront at the top of the canopy. Pressure patterns associated with coherent structures appear to be largely responsible for the form of the correlations stated above.Pressure patterns calculated from an integrated Poisson equation, using observed velocity and temperature signals during coherent structures, match the main features of the observed pressure. Retrieval of the pressure fluctuations in this manner reveals that the mean wind shear/turbulence interaction term is dominant, but that important contributions arise from two other terms in the equation. Buoyancy effects are negligible. We show that the surface pressure signal is mainly created by the velocity field near the top of the forest, and present evidence to suggest that features of the sub-crown air movement result directly from this pressure field.  相似文献   

8.
An atmospheric surface-layer (ASL) experiment conducted at a meteorological site in the Oostelijk-Flevoland polder of the Netherlands is described. Turbulent fluctuations of wind velocity, air temperature and static pressure were measured, using three 10 m towers.Simultaneous turbulent signals at several heights on the towers were used to investigate the properties of the turbulent structures which contribute most significantly to the turbulent vertical transports in the unstable ASL. These turbulent structures produce between 30 and 50% of the mean turbulent vertical transport of horizontal alongwind momentum and they contribute to between 40 and 50% of the mean turbulent vertical heat transport; in both cases this occurs during 15 to 20% of the total observation time.The translation speed of the turbulent structures equals the wind speed averaged over the depth of the ASL, which scales on the surface friction velocity. The inclination angle of the temperature interface at the upstream edge of the turbulent structures to the surface is significantly smaller than that of the internal shear layer, which is associated with the temperature interface. The turbulent structures in the unstable ASL are determined by a large-scale temperature field: Convective motions, which encompass the whole depth of the planetary boundary layer (PBL), penetrate into the ASL. The curvature of the vertical profile of mean horizontal alongwind velocity forces the alignment of the convective cells in the flow direction (Kuettner, 1971), which have an average length of several hundreds of metres and an average width of a few tens of metres. This mechanism leads to the formation of turbulent structures, which extend throughout the depth of the ASL.  相似文献   

9.
Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceL s between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withL s being determined by a local horizontal wind shear scale.  相似文献   

10.
Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.  相似文献   

11.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

12.
王信理  熊文愈 《气象学报》1995,53(2):217-224
综合考虑梯度输送和阵性穿透作用,并对植被上方的过渡层作适当处理,提出了植被微气象的一阶闭合模型。它对温、湿、风等物理量垂直分布的模拟精度良好。引用系统优化理论和方法,对模型中参数作多维非线性搜索,结果客观可靠。由于植物本身的调节适应能力和反馈作用,大气与植被间的动量与水热交换机制和过程不尽相同。在动量输送过程中,梯度产生项和阵性穿透皆不可忽视,尤其在群体下部,更为重要;而在热量和水分输送过程中,阵性穿透作用在低矮密集植被中的贡献甚微,梯度产生项起主导作用。  相似文献   

13.
Turbulence structure in a deciduous forest   总被引:5,自引:2,他引:5  
Three-dimensional wind velocity components were measured at two levels above and at six levels within a fully-leafed deciduous forest. Greatest shear occurs in the upper 20% of the canopy, where over 70% of the foliage is concentrated. The turbulence structure inside the canopy is characterized as non-Gaussian, intermittant and highly turbulent. This feature is supported by large turbulence intensities, skewness and kurtosis values and by the large infrequent sweeps and ejections that dominate tangential momentum transfer. Considerable day/night differences were observed in the vertical profiles of the mean streamwise wind velocity and turbulence intensities since the stability of the nocturnal boundary layer dampens turbulence above and within the canopy.  相似文献   

14.
The new Forest-Land-Atmosphere ModEl called FLAME is presented. The first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993) is applied to study the interactions between a forested land-surface and the atmospheric boundary layer (ABL). The transilient scheme is used for unequal vertical grid spacing and includes the effects of drag, wake turbulence, and interference to vertical mixing by plant elements. Radiation transfer within the vegetation and the equations for the energy balance at the leaf surface have been taken from Norman (1979). Among others, the model predicts profiles of air temperature, humidity and wind velocity within the ABL, sensible and latent heat fluxes from the soil and the vegetation, the stomata and aerodynamic resistances, as well as profiles of temperature and water content in the soil. Preliminary studies carried out for a cloud free day and idealized initial conditions are presented. The canopy height is 30 m within a vertical domain of 3 km. The model is able to capture some of the effects usually observed within and above forested areas, including the relative wind speed maximum in the trunk space and the counter gradient-fluxes in the lower part of the plant stand. Of special interest is the determination of the location and magnitude of the turbulent mixing between model layers, which permits one to identify the effects of large eddies transporting momentum and scalar quantities into the canopy. A comparison between model simulations and field measurements will be presented in a future paper.  相似文献   

15.
Abstract

Dawn‐to‐dusk evolution of air turbulence, sensible heat and latent heat above a forest during cloud‐free or near‐cloud‐free summer conditions is modelled by way of a system of differential equations. Temperatures in and above the canopy, near canopy‐top wind velocities, early morning leaf moisture (dew) and afternoon canopy ventilation (i.e. heat released from the canopy and from below the canopy) are included in the mathematical treatment. Computed results are compared with field data for atmospheric temperature and wind speed profiles up to 1200 m, within‐canopy temperature, and canopy‐level radiation, turbulent fluxes and wind speeds. Data were collected at a central New Brunswick mixed‐wood forest site dominated by spruce (Picea spp. ) and shade‐tolerant hardwoods for four representative summer days. It was found that the effective canopy temperature was not only affected by insolation, but also by the extent of canopy ventilation and the amount of dew on the foliage. The growth of the mixing layer was affected by canopy ventilation and by above‐canopy wind speeds. Model calculations closely simulated the meteorological observations.  相似文献   

16.
Three-dimensional wind velocity components were measured above and within a uniform almond orchard. Turbulent statistics associated with the turbulent flow inside the canopy are examined in detail. Turbulence in an almond orchard is characterized by relatively high turbulent intensities and large skewness and kurtosis values. These results indicate that the frequency distribution of wind velocity components is non-Gaussian. Conditional sampling of the turbulent measurements show that large, infrequent sweeps provide the predominant mechanism for tangential momentum stress in the canopy crown. Deep inside the canopy, a secondary wind maximum and small, but positive, tangential momentum stresses are observed.  相似文献   

17.
Spectra of CO2 and water vapour fluctuations from measurements made in the marine atmospheric surface layer have been analyzed. A normalization of spectra based on Monin–Obukhov similarity theory, originally developed for wind speed and temperature, has been successfully extended also to CO2 and humidity spectra. The normalized CO2 spectra were observed to have somewhat larger contributions from low frequencies compared to humidity spectra during unstable stratification. However, overall, the CO2 and humidity spectra showed good agreement as did the cospectra of vertical velocity with water vapour and CO2 respectively. During stable stratification the spectra and cospectra displayed a well-defined spectral gap separating the mesoscale and small-scale turbulent fluctuations. Two-dimensional turbulence was suggested as a possible source for the mesoscale fluctuations, which in combination with wave activity in the vertical wind is likely to explain the increase in the cospectral energy for the corresponding frequency range. Prior to the analysis the turbulence time series of the density measurements were converted to time series of mixing ratios relative to dry air. Some differences were observed when the spectra based on the original density measurements were compared to the spectra based on the mixing ratio time series. It is thus recommended to always convert the density time series to mixing ratio before performing spectral analysis.  相似文献   

18.
We analyse single-point velocity statistics obtained in a wind tunnel within and above a model of a waving wheat crop, consisting of nylon stalks 47 mm high and 0.25 mm wide in a square array with frontal area index 0.47. The variability of turbulence measurements in the wind tunnel is illustrated by using a set of 71 vertical traverses made in different locations, all in the horizontally-homogeneous (above-canopy) part of the boundary layer. Ensemble-averaged profiles of the statistical moments up to the fourth order and profiles of Eulerian length scales are presented and discussed. They are consistent with other similar experiments and reveal the existence of large-scale turbulent coherent structures in the flow. The drag coefficient in this canopy as well as in other reported experiments is shown to exhibit a characteristic height-dependency, for which we propose an interpretation. The velocity spectra are analysed in detail; within and just above the canopy, a scaling based on fixed length and velocity scales (canopy height and mean horizontal wind speed at canopy top) is proposed. Examination of the turbulent kinetic energy and shear stress budgets confirms the role of turbulent transport in the region around the canopy top, and indicates that pressure transport may be significant in both cases. The results obtained here show that near the top of the canopy, the turbulence properties are more reminiscent of a plane mixing layer than a wall boundary layer.  相似文献   

19.
Abstract

During moist weather under stably stratified and light wind conditions very often “dot” shaped echoes, either distributed randomly or arranged in a stratified layer, have been observed on sodar echograms. They last from a couple of hours to ten hours. Their horizontal widths are up to 200 m while their vertical sizes are up to 40 m. It is argued that dot echoes represent clusters of water vapour translated by the wind in the boundary layer, the back‐scattered acoustic energy being the contribution of correlated fluctuations in temperature and humidity (turbulent mixing) in the inertial subrange.  相似文献   

20.
High-resolution measurements of thermodynamic, microphysical, and turbulence properties inside a turbulent inversion layer above a marine stratocumulus cloud layer are presented. The measurements are performed with the helicopter-towed measurement payload Airborne Cloud Turbulence Observation System (ACTOS), which allows for sampling with low true air speeds and steep profiles through cloud top. Vertical profiles show that the turbulent inversion layer consists of clear air above the cloud top, with nearly linear profiles of potential temperature, horizontal wind speed, absolute humidity, and concentration of interstitial aerosol. The layer is turbulent, with an energy dissipation rate nearly the same as that in the lower cloud, suggesting that the two are actively coupled, but with significant anisotropic turbulence at the large scales within the turbulent inversion layer. The turbulent inversion layer is traversed six times and the layer thickness is observed to vary between 37 and 85 m, whereas the potential temperature and horizontal wind speed differences at the top and bottom of the layer remain essentially constant. The Richardson number therefore increases with increasing layer thickness, from approximately 0.2 to 0.7, suggesting that the layer develops to the point where shear production of turbulence is sufficiently weak to be balanced by buoyancy suppression. This picture is consistent with prior numerical simulations of the evolution of turbulence in localized stratified shear layers. It is observed that the large eddy scale is suppressed by buoyancy and is on the order of the Ozmidov scale, much less than the thickness of the turbulent inversion layer, such that direct mixing between the cloud top and the free troposphere is inhibited, and the entrainment velocity tends to decrease with increasing turbulent inversion-layer thickness. Qualitatively, the turbulent inversion layer likely grows through nibbling rather than engulfment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号