首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
林元章 《天文学报》1994,35(2):219-224
本文主要根据Ha线心和不同偏带的观测资料,结合紫外CIV1548谱线的测量结果,分析研究了1980年6月25日AR2522活动区中一段暗条在耀斑爆发前15分钟所经历的三次逐渐增强的间歇式扭绞,最终导致暗条破裂和耀斑爆发的物理过程,并且用无力场磁绳近似模拟时间条的扭绞运动,估算了暗条扭绞引直怕无力因子a的变化,轴向电流增大和守能,讨论了暗条的稳定性,试图对暗条的瓦解和耀斑爆发予以理论解释。  相似文献   

2.
唐玉华  郑瑞民 《天文学报》1995,36(3):301-308,T001
本文收集了1986年2月4日大耀斑的Hα、微波、X射线和γ射线全波段的观测资料。利用暗条电流环模型分析了该耀斑的物理过程,测量了活动暗条的上升运动,求解了动量方程和能量方程。结果表明:(1)1986年2月4日的3B/X3耀斑可能是由暗条电流环之间的合并不稳定性所致;(2)电阻撕裂摸不稳定性是一种有效的耀斑前预热机制;(3)耀斑的高能观测资料进一步表明了电流环合并不稳定性是引起该大耀斑期间所有高能粒  相似文献   

3.
光球物质的水平运动对暗条激活和耀斑爆发的影响   总被引:2,自引:0,他引:2  
本文作者用数值方法讨论光球物质水平运动的两种基本模式-剪切运动和会聚运动对活动区背景磁场及暗条电流的影响,并由此分析它们与暗条激活以及耀斑爆发的物理关系,所得结果表明:(1)光球物质的水平运动在激活暗条和驱动耀斑爆发中具有重要的作用;(2)作为耀斑现象先兆之一的暗条激活过程,主要是由暗条电流的增强和背景磁场的演化所决定,这个过程的复杂性导致了耀斑现象物理机制和形态的多样性。  相似文献   

4.
两个活动区电流暗条的平衡   总被引:3,自引:1,他引:2  
本文利用Kuperu-Raadu模型下电流暗条在垂直方向上的力平衡方程,研究McMath10662和McMath10607两个活动区中暗条电流的变化及其垂直运动的规律,探讨暗条和耀斑的关系。结果表明:用具有镜象电流日珥模型来描述爆发日珥是合适的;暗条长度可能与耀斑高度关系不密切,但电流暗条越长,对应的临界电流值越大。  相似文献   

5.
本文利用Kuperu—Raadu模型下电流暗条在垂直方向上的力平衡方程,研究McMath10662和McMath10607两个活动区中暗条电流的变化及其垂直运动的规律,探讨暗条和耀斑的关系。结果表明:用具有镜象电流的日珥模型来描述爆发日珥是合适的;暗条长度可能与耀斑高度关系不密切,但电流暗条越长,对应的临界电流值越大。  相似文献   

6.
位于活动区磁中性线上方的暗条,随着活动区光球物质运动和磁结构演化,其上升运动规律呈多样性。根据暗条上升运动的特征,一般将其分为两类:第一类为缓慢上升(速度为Km.s^-1量级),在暗条上升过程中,亚电场中速是子能量为几十~100LeV量级(E〈ED,E为暗条表面电场强度,ED为经典Duecier场);第二类为快速上升(速度为几十~几百Km.s^-1量级)因暗条快速上升在其下方形成X型中性点,暗条加  相似文献   

7.
本文利用赣榆站获得的精细Hα资料,分析了同NOAA6327和6331活动区相关的一个大暗条的活动情况,这是一个部分宁静和部分活动的复合暗条,伴有频繁的分裂和重现。特别是在10月29日附近活动区的耀斑活动后将它激活,暗条在耀斑的MHD长波的激发下,呈现出强烈的红移特征-向下沉降,本文利用VanTedetal所发展的暗条电流模型来解释暗条的活动,针对不同的背景场形式和参数,计算了暗条的不稳定(向上或向  相似文献   

8.
利用色球Ha单色像、TRACE和SOHO/EITEUV单色像、SOH0/LASCO白光日冕观测及SOH0/MDI光球磁图,对2003年8月25日日面AR0442边界上2个暗条爆发的不同动力学行为及与之相关的耀斑、耀斑后环和CME等现象进行了分析。主要结论如下:(1)2个暗条的激活态和爆发过程有明显不同:暗条F1先变粗变黑,出现明显分叉,然后表现为whiplike爆发;而暗条F2一部分先消失,其余部分出现水平的轴向运动,最后F2整体爆发。(2)2个暗条的爆发机制是不同的:F1的爆发可能与新浮磁流密切相关,而F2的爆发与F1爆发产生的双带耀斑的分离运动和相互作用密切相关。  相似文献   

9.
报导了由Yohkoh软X望远镜(SXT)和日本国天文台(NAOJ)的太阳耀斑望远镜(SFT)于1992年6月4日共同记录到的一次磁重连和色球蒸发现象的直接而完整的过程,重连和蒸发的现象和过程可简述如下,Hα活动暗条上升并逐渐消失。跨越在此暗条上的二条相互交叉的日冕环的交界处增亮表明,电流片在此二冕环间相切的界面上形成,磁重连已开始。重连日冕环的上升标志了入流运动,而重连日冕环的足点增亮标志了出流运  相似文献   

10.
利用多波段联合观测数据,综合分析研究了一个发生于2007年5月23日的日冕物质抛射(Coronal Mass Ejection,CME)爆发事件的起源和初始阶段的物理演化过程.该CME起源于活动区10956内的一个并没有严格地位于活动区极性反转线上的U形活动区暗条,该暗条首先被扰动,然后从中间部分开始缓慢上升.在暗条上升运动过程中,从极紫外和软X射线像上可观测到位于暗条上方的日冕磁环也在不断地上升并且有持续向外的扩张运动.最终,这些冕环和暗条一起爆发并伴随着一个位于暗条断开位置附近的日冕暗化区域的形成.这一爆发过程还伴随着一个静止轨道业务卫星(GeostationaryOperational Environmental Satellites,GOES)软X射线流量级别为B5.3的亚耀斑发生,该光斑显示出与CME之间具有在时间和空间上的紧密联系.与CME的"标准"磁流绳模型一致,这些太阳表面活动可以看作是CME的初始演化阶段在日面上的表现信号,并且该CME的亮前锋可能是由预先存在于暗条上方的冕环体系直接演化而来.另外,文中还讨论了与该事件相关的暗条爆发、耀斑、冕环扩张和消失以及日冕暗化之间的关系.  相似文献   

11.
The formation and eruption of active region filaments is supposed to be caused by the increase of a concentrated current embedded in the active region background magnetic field of an active region according to the theory of Van Tend and Kuperus (1978).The onset of a filament eruption is due to either changes in the background magnetic field or the increase of the filament current intensity. Both processes can be caused by the emergence of new magnetic flux as well as by the motion of the photospheric footpoints of the magnetic field lines. It is shown that if the background field evolves from a potential field to a nearly force-free field the vertical equilibrium of the current filament is not affected, but large forces are generated along the filament axis. This is identified as the cause of filament activation and the increase in filament turbulence during the flare build-up phase. Depending on the evolution of the background field and the current filament, two different scenarios for flare build-up and filament eruption are distinguished.This work was done while one of the authors (M.K.) was participating in the CECAM workshop on Physics of Solar Flares held at Orsay, France, in June 1979.  相似文献   

12.
By means of Hα, EUV, soft X-ray, hard X-ray, and photospheric magnetic field observations, we report the surge-like eruption of a small-scale filament, called “blowout surge” according to recent observations, occurring on a plage region around AR 10876 on 1 May 2006. Along magnetic polarity reversal boundaries with obvious magnetic cancelations, the filament was located underneath a compact coronal arcade and close to one end of large coronal loops around the AR’s periphery. The filament started to erupt about 8 min before the main impulsive phase of a small two-ribbon flare, which had two Hα blue-wing kernels connected by hard X-ray loop-top sources on the both sides of the filament. After the flare end, the filament further underwent a distant eruption following a path nearly along the preexisting large loops, and thus looked like an Hα surge and an EUV jet. During the eruption, a small coronal dimming was formed near the flare, while weak brightenings appeared around the remote end of the large loops. We interpret these joint observations as the filament eruption being confined and guided by the large loops. The filament eruption, initially embedded in one footpoint region of the large loops, can break away from the magnetic restraint of the overlying compact arcade, but might be still limited inside the large loops. As a result, the eruption took a surge form that can only expand laterally along the large loops rather than erupt radially.  相似文献   

13.
Based on photospheric vector magnetograms obtained at Huairou Solar Observing Station (HSOS), non-potential characteristics of the magnetic field beneath the filament in active region NOAA 9077 are investigated. We focus on the structure and evolution of the magnetic field from 00:08 UT to 10:25 UT of 14 July before the Bastille event. Particular attention is paid to transverse field strength, shear degree and horizontal gradient of the line-of-sight magnetic field around the filament and filament channel. The following characteristics are found. (1) The magnetic non-potentiality has an obviously non-uniform distribution. The shear degree of the transverse field (Hagyard et al., 1984) is very large, up to 75° in some sites beneath the filament, such as the initial brightening site in TRACE 1600 Å images and the breaking site of the filament. The transverse field and the horizontal gradient of the line-of-sight field are very large in some parts corresponding to the hottest and continuously brightening portions. (2) The mean strength and mean shear angle of the transverse field and mean horizontal gradient of the line-of-sight field have obviously dropped in most parts beneath the filament for two hours before the filament eruption and onset of the X5.7/3B flare. After comparing simultaneous UV and EUV images, H filtergrams and Dopplergrams at solar atmosphere, we suggest that magnetic cancellation is likely to quickly transport the magnetic energy and complexity into the higher atmosphere in these two hours. This leads to magnetic instability in the filament and eventually causes the eruption of filament and onset of the flare.  相似文献   

14.
We present a multi-wavelength analysis of an eruption event that occurred in active region NOAA 11093 on 7 August 2010, using data obtained from SDO, STEREO, RHESSI, and the GONG Hα network telescope. From these observations, we inferred that an upward slow rising motion of an inverse S-shaped filament lying along the polarity inversion line resulted in a CME subsequent to a two-ribbon flare. Interaction of overlying field lines across the filament with the side-lobe field lines, associated EUV brightening, and flux emergence/cancelation around the filament were the observational signatures of the processes leading to its destabilization and the onset of eruption. Moreover, the time profile of the rising motion of the filament/flux rope corresponded well with flare characteristics, viz., the reconnection rate and hard X-ray emission profiles. The flux rope was accelerated to the maximum velocity as a CME at the peak phase of the flare, followed by deceleration to an average velocity of 590 km s−1. We suggest that the observed emergence/cancelation of magnetic fluxes near the filament caused it to rise, resulting in the tethers to cut and reconnection to take place beneath the filament; in agreement with the tether-cutting model. The corresponding increase/decrease in positive/negative photospheric fluxes found in the post-peak phase of the eruption provides unambiguous evidence of reconnection as a consequence of tether cutting.  相似文献   

15.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

16.
In this paper, the chromospheric magnetic structures and their relation to the photospheric vector magnetic field in the vicinity of a dark filament in active region 5669 have been demonstrated. Structural variations are shown in chromospheric magnetograms after a solar flare. Filament-like structures in the chromospheric magnetograms occurred after a solar flare. They correspond to the reformation of the chromospheric dark filament, but there is no obvious variation of the photospheric magnetic field. We conclude that (a) some of the obvious changes of the chromospheric magnetic fields occurred after the flare, and (b) a part of these changes is perhaps due to flare brightening in the chromospheric H line.During the reforming process of the dark filament, a part of its chromospheric velocity field shows downward flow, and it later shows upward flow.  相似文献   

17.
J. Yang  Y. Jiang  B. Yang  R. Zheng  D. Yang  J. Hong  H. Li  Y. Bi 《Solar physics》2012,279(1):115-126
We will present detailed observations of the asymmetrical eruption of a large quiescent filament on 24 November 2002, which was followed by a two-ribbon flare, three coronal dimmings, endpoint brightenings, and a very fast halo-type coronal mass ejection (CME). Before the eruption, the filament lay along the main neutral line (MNL) underneath a single-arcade helmet streamer with a simple bipolar configuration. However, photospheric magnetic fields on both sides of the filament showed an asymmetrical distribution, and the filament and MNL were not located just at the center of the streamer base but were closer to the eastern leg of the streamer arcade. Therefore, instead of erupting along the streamer’s symmetrical axis, the filament showed a nonradial and asymmetrical eruption. It lifted from the eastern flank of the streamer arcade to impact the western leg directly, leading to an asymmetrical CME that expanded westward; eventually the streamer was disrupted significantly. Accordingly, the opposite-polarity coronal dimmings at both sides of the filament forming in the eruption also showed an asymmetrical area distribution. We thus assume that the streamer arcade could guide the filament at the early eruption phase but failed to restrain it later. Consistent with previous results, these observations suggest that the global background magnetic field can impose additional action on the initial eruption of the filament and CME, as well as the dimming configuration.  相似文献   

18.
Predictions of Energy and Helicity in Four Major Eruptive Solar Flares   总被引:1,自引:0,他引:1  
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values of reconnected magnetic flux, flare energy, flux rope helicity, and orientation of the flux-rope poloidal field. We compare model predictions of those quantities to flare and MC observations, and within the estimated uncertainties of the methods used find the following: The predicted model reconnection fluxes are equal to or lower than the reconnection fluxes inferred from the observed ribbon motions. Both observed and model reconnection fluxes match the MC poloidal fluxes. The predicted flux-rope helicities match the MC helicities. The predicted free energies lie between the observed energies and the estimated total flare luminosities. The direction of the leading edge of the MC’s poloidal field is aligned with the poloidal field of the flux rope in the AR rather than the global dipole field. These findings compel us to believe that magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. We also note that since all four flares occurred in active regions without significant pre-flare flux emergence and cancelation, the energy and helicity that we find are stored by shearing and rotating motions, which are sufficient to account for the observed radiative flare energy and MC helicity.  相似文献   

19.
We observed 4B/X17.2 flare in Hα from super-active region NOAA 10486 at ARIES, Nainital. This is one of the largest flares of current solar cycle 23, which occurred near the Sun’s center and produced extremely energetic emission almost at all wavelengths from γ-ray to radio-waves. The flare is associated with a bright/fast full-halo earth directed CME, strong type II, type III and type IV radio bursts, an intense proton event and GLE. This flare is well observed by SOHO, RHESSI and TRACE. Our Hα observations show the stretching/de-twisting and eruption of helically twisted S shaped (sigmoid) filament in the south-west direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare shows almost similar evolution in Hα, EUV and UV. We measure the speed of Hα ribbon separation and the mean value is ∼ 70 km s-1. This is used together with photospheric magnetic field to infer a magnetic reconnection rate at three HXR sources at the flare maximum. In this paper, we also discuss the energetics of active region filament, flare and associated CME.  相似文献   

20.
Solar flares are powered by the energy stored in magnetic fields, so evolutionary information of the magnetic field is important for short-term prediction of solar flares. However, the existing solar flare prediction models only use the current information of the active region. A sequential supervised learning method is introduced to add the evolutionary information of the active region into a prediction model. The maximum horizontal gradient, the length of the neutral line, and the number of singular points extracted from SOHO/MDI longitudinal magnetograms are used in the model to describe the nonpotentiality and complexity of the photospheric magnetic field. The evolutionary characteristics of the predictors are analyzed by using autocorrelation functions and mutual information functions. The analysis results indicate that a flare is influenced by the 3-day photospheric magnetic field information before flare eruption. A sliding-window method is used to add evolutionary information of the predictors into machine learning algorithms, then C4.5 decision tree and learning vector quantization are employed to predict the flare level within 48 hours. Experimental results indicate that the performance of the short-term solar flare prediction model within the sequential supervised learning framework is significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号