首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A fully three-dimensional (3D) MHD model is applied to simulate the evolution of large-scale magnetic field in galaxies interacting with the intra-cluster medium (ICM). As the model input we use a time dependent velocity field of gas clouds (HI) resulting from 3D N-body sticky-particle model of a galaxy. These clouds are affected by ram pressure due to their rapid motion through the ICM. The gas evolves in an analytically given gravitational potential which includes a dark matter halo, a disk, and a bulge component. We found that due to the interaction with the ICM the resultant magnetic field correctly reproduces the observed structures of the magnetic field forming peculiar spiral arms and magnetic features widely observed in cluster spiral galaxies. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

2.
We present our spectroscopic observations of the galaxy NGC 7468 performed at the 6-m Special Astrophysical Observatory telescope using the UAGS long-slit spectrograph, the MPFS multi-pupil fiber spectrograph, and the IFP scanning Fabry-Perot interferometer. We found no significant deviations from the circular rotation of the galactic disk in the velocity field in the regions of brightness excess along the major axis of the galaxy (the putative polar ring). Thus, these features are either tidal structures or weakly developed spiral arms. However, we detected a gaseous disk at the center of the galaxy whose rotation plane is almost perpendicular to the plane of the galactic disk. The central collision of NGC 7468 with a gas-rich dwarf galaxy and their subsequent merging seem to be responsible for the formation of this disk.  相似文献   

3.
The evolution of three-dimensional (3D), dynamo excited galactic magnetic fields under the influence of a time-dependent gas flow in spiral arms is already well investigated. Our principal goal is to check how the dynamo-driven turbulent magnetic fields affect the gas flows. Numerical solutions of the full set of 3D MHD equations for dynamos in spiral galaxies are presented. Further we try to investigate the nonlinear evolution of magnetic instabilities in a global galactic model. The model includes differential rotation, eddy diffusivity and tensorial alpha-effect. In a first step the flow is driven by a prescribed gravitational potential. The vertical density stratification and the radial-azimutal spiral pattern are taken closely to observational data. We use a modified variant of the highly parallelized time-stepping ZeusMP code for the simulations of global galactic magnetic fields and gas flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We present disk thicknesses, some other parameters and their statistics of 108 non-edge-on spiral galaxies. The method for determining the disk thickness is based on solving Poisson's equation for a disturbance of matter density in three-dimensional spiral galaxies. From the spiral arms found we could obtain the pitch angles, the inclination of the galactic disk, and the position of the innermost point (the forbidden region with radius r 0 to the galactic center) of the spiral arm, and finally the thickness.  相似文献   

5.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
星系盘厚度效应的研究   总被引:1,自引:0,他引:1  
在三维引力Poisson方程严格解基础上,探讨了有限厚星系盘基盘的动力学性质,并进一步讨论了盘的厚度效应对银河系所需晕质量的影响。研究了扰动盘的动力学性质,通过将扰动引力势Poisson方程的严格解与林家翘、徐遐生提出的自维持密度波理论相结合,建立了三维旋涡星系有限厚盘上密度波的色散关系。在此色散关系的基础上讨论了盘的局域稳定性,研究了旋涡星系旋臂的形态、三维盘状星系密度波的群速度。研究表明厚度是星系盘研究中不容忽略的重要参量。另外在有限厚盘星系密度波色散关系的基础上还探讨了一种确定星系厚度的新方法。  相似文献   

7.
We investigate the dynamics of magnetic fields in spiral galaxies by performing 3D magnetohydrodynamics simulations of galactic discs subject to a spiral potential using cold gas, warm gas and a two-phase mixture of both. Recent hydrodynamic simulations have demonstrated the formation of interarm spurs as well as spiral arm molecular clouds, provided the interstellar medium model includes a cold H  i phase. We find that the main effect of adding a magnetic field to these calculations is to inhibit the formation of structure in the disc. However, provided a cold phase is included, spurs and spiral arm clumps are still present if β≳ 0.1 in the cold gas. A caveat to the two-phase calculations though is that by assuming a uniform initial distribution, β≳ 10 in the warm gas, emphasizing that models with more consistent initial conditions and thermodynamics are required. Our simulations with only warm gas do not show such structure, irrespective of the magnetic field strength.
Furthermore, we find that the introduction of a cold H  i phase naturally produces the observed degree of disorder in the magnetic field, which is again absent from simulations using only warm gas. Whilst the global magnetic field follows the large-scale gas flow, the magnetic field also contains a substantial random component that is produced by the velocity dispersion induced in the cold gas during the passage through a spiral shock. Without any cold gas, the magnetic field in the warm phase remains relatively well ordered apart from becoming compressed in the spiral shocks. Our results provide a natural explanation for the observed high proportions of disordered magnetic field in spiral galaxies and we thus predict that the relative strengths of the random and ordered components of the magnetic field observed in spiral galaxies will depend on the dynamics of spiral shocks.  相似文献   

8.
Spiral galaxies host dynamically important magnetic fields which can affect gas flows in the disks and halos. Total magnetic fields in spiral galaxies are strongest (up to 30 μG) in the spiral arms where they are mostly turbulent or tangled. Polarized synchrotron emission shows that the resolved regular fields are generally strongest in the interarm regions (up to 15 μG). Faraday rotation measures of radio polarization vectors in the disks of several spiral galaxies reveal large-scale patterns which are signatures of coherent fields generated by a mean-field dynamo. Magnetic fields are also observed in radio halos around edge-on galaxies at heights of a few kpc above the disk. Cosmic-ray driven galactic winds transport gas and magnetic fields from the disk into the halo. The halo scale height and the electron lifetime allow to estimate the wind speed. The magnetic energy density is larger than the thermal energy density, but smaller than the kinetic energy density of the outflow. There is no observation yet of a halo with a large-scale coherent dynamo pattern. A global wind outflow may prevent the operation of a dynamo in the halo. Halo regions with high degrees of radio polarization at very large distances from the disk are excellent tracers of interaction between galaxies or ram pressure of the intergalactic medium. The observed extent of radio halos is limited by energy losses of the cosmic-ray electrons. Future low-frequency radio telescopes like LOFAR and the SKA will allow to trace halo outflows and their interaction with the intergalactic medium to much larger distances.  相似文献   

9.
We model the dynamics of Magellanic Stream with the ram-pressure scenario in the logarithmic and power-law galactic halo models and construct numerically the past orbital history of Magellanic Clouds and Magellanic Stream. The parameters of models include the asymptotic rotation velocity of spiral arms, halo flattening, core radius and rising or falling parameter of rotation curve. We obtain the best-fit parameters of galactic models through the maximum likelihood analysis, comparing the high resolution radial velocity data of HI in Magellanic Stream with that of theoretical models. The initial condition of the Magellanic Clouds is taken from the six different values reported in the literature. We find that oblate and nearly spherical shape halos provide a better fit to the observation than the prolate halos. This conclusion is almost independent of choosing the initial conditions and is valid for both logarithmic and power-law models.  相似文献   

10.
The spiral pattern in the nearby spiral galaxy NGC 6946 has been studied using the wavelet transformation technique, applied to galaxy images in polarized and total non-thermal radio emission at λλ 3.5 and 6.2 cm, in broadband red light, in the λ 21.1 cm H  i line and in the optical Hα line. Well-defined, continuous spiral arms are visible in polarized radio emission and red light, where we can isolate a multi-armed pattern in the range of galactocentric distances 1.5–12 kpc, consisting of four long arms and one short spiral segment. The 'magnetic arms' (visible in polarized radio emission) are localized almost precisely between the optical arms. Each magnetic arm is similar in length and pitch angle to the preceding optical arm (in the sense of galactic rotation) and can be regarded as its phase-shifted image. Even details like a bifurcation of an optical arm have their phase-shifted counterparts in the magnetic arms. The average relative amplitude of the optical spiral arms (the stellar density excess over the azimuthal average) grows with galactocentric radius up to 0.3–0.7 at r ≃5 kpc, decreases by a factor of two at r =5–6 kpc and remains low at 0.2–0.3 in the outer parts of the galaxy. By contrast, the magnetic arms have a constant average relative amplitude (the excess in the regular magnetic field strength over the azimuthal average) of 0.3–0.6 in a wide radial range r =1.5–12 kpc. We briefly discuss implications of our findings for theories of galactic magnetic fields.  相似文献   

11.
In order to study magnetic field generation in galaxies with active processes such as intensive star formation, supernovae explosions, etc, a model is needed to differentiate between the properties of interstellar medium in different parts of the galactic disk. In this paper we consider galactic dynamo equations with stochastic coefficients where the parameters responsible for dissipation randomly depend on time and spatial coordinates and are distributed around two values corresponding to aweakly heated neutral component and a hot ionized component. Ionized gas is assumed to be concentrated in small regions evenly distributed over the galactic disk plane. The ratio of the total area of such regions to the entire disk plane corresponds to the mean surface star-formation density in the given region of the galactic disk. Unlike in our previous papers, we take into account the dissipation in the disk plane. We have obtained numerical estimates of the exponential growth rate for different numbers of areas containing ionized gas. We show that the influence of the fluctuations on the magnetic field behavior has a threshold nature; intensive star formation leads to the destruction of large scale magnetic field structures.  相似文献   

12.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

13.
A new mechanism of sweeping out of dust grains beyond galactic disks both in the radial direction along the galactic plane and in the vertical, cross-disk direction is proposed. The mechanism is driven by the interaction of dust grains with the bisymmetric nonstationary magnetic field of the galaxy, whose lines are curved and corotate with the stellar spiral density wave responsible for the arms. We attribute the radial transfer of interstellar dust grains in the plane of galactic disks to the fact that charged dust grains are “glued” to magnetic field lines and are therefore pushed outward because of the rotation of magnetic field lines and their tilt with respect to the radial direction parallel to the disk plane. In addition, dust is swept out vertically in the cross-disk direction because of the drift motion in crossed magnetic and gravitational fields (both are parallel to the galactic plane). Numerical computations of the motion of dust grains in real magneto-gravitational fields with the allowance for the drag force from interstellar gas show that the time scale of dust grain transport beyond galactic disks is on the order of 1 Gyr or shorter.  相似文献   

14.
We have modelled the spatial distribution of luminous X-ray binaries (XRBs) in spiral galaxies that are like the Milky Way using an evolutionary population synthesis code. In agreement with previous theoretical expectations and observations, we find that both high- and low-mass XRBs show clear concentrations towards the galactic plane and bulge. We also compare XRB distributions under the galactic potential with a dark matter halo and the modified Newtonian dynamics potential, and we suggest that the difference may serve as potential evidence to discriminate between these two types of model.  相似文献   

15.
Of the various proposed mechanisms to maintain spiral arms in spiral galaxies, three have been supported by observations, statistics, or theories (bar, companion, extended solid-body rotation curve). It is shown here that in the presence of a central bar or oval distirtion to maintain spiral arms, the global magnetic field lines also follow the spiral shape of the arms. Excluding then barred galaxies, it is confirmed that in the presence of a companion galaxy to maintain spiral arms, the global magnetic lines in a spiral galaxy will either follow thespiral shape of the arms (when tides are larger), or else will follow thering shape of the orbit of matter crossing spiral arms (when tides are small). In the presence of an extended solid-body rotation curve to maintain spiral arms within the solid-body rotation region, the global magnetic field lines also follow the spiral shape of the arms.The results above do not favour the hypothesis that a weak intergalactic magnetic field could have been amplified enough by gravitational contraction of a protogalaxy to give rise to the observed strength of galactic magnetic fields. On the contrary, leakage of galactic magnetic fields into intergalactic/cosmological space is expected.  相似文献   

16.
We study, theoretically and with N-body simulations, the formation of spiral patterns in retrograde galaxy encounters. A one-armed leading spiral dominates in a disk if the tidal perturbation from the companion is large and the disk is surrounded by a massive halo. Otherwise, a trailing pattern forms. The leading arm is made up of particles in slightly elongated orbits whose turning points outline the arm. The arm rotates opposite to the disk rotation. We have found one spiral galaxy, NGC4622, with a leading arm near its nucleus. From the literature, we find that very few spirals, if any, in a sample of strongly perturbed galaxies have leading arms. A possible reason for this is that few spiral galaxies have a halo with larger mass than the disk within the visible disk.  相似文献   

17.
The importance of the interstellar magnetic field is studied in relation to the evolution of superbubbles with a three-dimensional (3D) numerical magnetohydrodynamical (MHD) simulation. A superbubble is a large supernova remnant driven by sequential supernova explosions in an OB association. Its evolution is affected by the density stratification in the galactic disc. After the superbubble size reaches 2–3 times the density scaleheight, it expands preferentially in the z -direction, until finally it can punch out a hole in the gas disc (blowout). On the other hand, the magnetic field running parallel to the galactic disc has the effect of preventing it from expanding in the direction perpendicular to the field. The density stratification and the magnetic fields have completely opposite effects on the evolution of the superbubble. We present results of a 3D MHD simulation in which both effects are included. As a result, it is concluded that when the magnetic field has a much larger scaleheight than the density, even for a model in which the bubble would blow out from the disc if the magnetic field were absent, a magnetic field with a strength of 5 μG can confine the bubble in | z |≲300 pc for ≃ 20 Myr (confinement). In a model in which the field strength decreases in the halo as B  ∝ ρ1/2, the superbubble eventually blows out like a model with B  = 0 even if the magnetic field in the mid-plane is as strong as B  = 5 μG.  相似文献   

18.
A method is introduced for constructing two-color maps for the in-plane component of the magnetic field of our galaxy in (R, l) and (DM, l) coordinates. It is shown that, in agreement with the standard models of the galactic magnetic field, the magnetic field in neighboring spiral arms reverses direction. However, the magnetic field in the spiral arm of Sagittarius differs significantly from the standard magnetic field model, with the major difference being that the magnetic fields in the southern and northern hemispheres are oppositely directed in the spiral arm of Sagittarius. It is proposed that this distribution of the magnetic field can be explained best by assuming that the spiral arm of Sagittarius, or, at least, a magnetic spiral arm in that region, is not symmetric with respect to the galactic plane and lies mainly in the northern hemisphere.  相似文献   

19.
龚俊宇  毛业伟 《天文学报》2023,64(2):20-105
利用星系解构软件GALFIT通过面亮度轮廓拟合对近邻早型旋涡星系M81 (NGC 3031)进行形态学解构,旨在探究M81星系的结构组成并对其进行形态学量化.通过6种解构模式,对M81进行了不同复杂程度的结构分解,其中最复杂的解构模式包含核球、盘、外旋臂、内旋臂、星系核5个子结构.研究结果显示, M81有一个Sérsic指数约为5.0的经典核球,其形态和光度在不同解构模式中均保持稳定; M81星系盘的Sérsic指数约为1.2,但它的形态参数和光度与是否分解内旋臂相关.不同子结构的组合对作为混合体的星系整体的形态有不可忽视的影响.星系解构的结果提供了不同解构模式适用性的建议:其中核球+盘+星系核的三成分解构适用于大样本星系的核-盘研究;而考虑旋臂的复杂解构则适合于对星系子结构的精确测量,如小样本(或个源)研究.基于Spitzer-The Infrared Array Camera (IRAC) 4.5μm的单波段图像的形态学解构研究是后续一系列研究的开始,在此基础上未来将会对M81进行多波段解构,同时研究不同子结构的光谱能量分布和星族性质,并推断M81各子结构的形成历史和演化过程.  相似文献   

20.
General ideas, as well as experimental and theoretical efforts concerning the prediction and discovery of new structures in the disks of spiral galaxies – giant anticyclones - are reviewed. A crucial point is the development of a new method to restore the full vector velocity field of the galactic gas from the line-of-sight velocity field. This method can be used to get self-consistent solutions for the following problems: 1) determination of non-circular velocities associated with spiral-vortex structure; 2) determination of fundamental parameters of this structure: pattern speed, corotation radius, location of giant anticyclones; 3) refinement of galactic rotation curves taking into account regular non-circular motion in the spiral density wave, which makes it possible to build more accurate models of the mass distribution in the galaxy; 4) refinement of parameters of the rotating gaseous disk: inclination angle, center of rotation and position angle of the major dynamical axis, systematic velocity. The method is demonstrated using the restoration of the velocity field of the galaxy NGC 157 as an example. Results for this and some other spiral galaxies suggest that giant anticyclones are a universal property of galaxies with grand design structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号