首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial and temporal evolution of the high temperature plasma in the flare of 1973 June 15 has been studied using the flare images photographed by the NRL XUV spectroheliograph on Skylab.The overall event involves the successive activations of a number of different loops and arches bridging the magnetic neutral line. The spatial shifts and brightenings observed in the Fe xxiii–xxiv lines are interpreted as the activation of new structures. These continued for four or five minutes after the end of the microwave burst phase, implying additional energy-release unrelated to the nonthermal phase of the flare. A shear component observed in the coronal magnetic field may be a factor in the storage and release of the flare energy.The observed Fe xxiii–xxiv intensities define a post-burst heating phase during which the temperature remained approximately constant at 13 × 106 K while the Fe xxiv intensity and 0–3 Å flux rose to peak values. This phase coincided with the activation of the densest structure (N e = 2 × 1011 cm–3). Heating of higher loops continued into the decay phase, even as the overall temperature and flux declined with the fading of the lower Fe xxiv arches.The observed morphology of individual flaring arches is consistent with the idea of energy release at altitude in the arch (coincident with a bright, energetic core in the Fe xxiv image) and energy flow downward into the ribbons. The Doppler velocity of the Fe xxi 1354 Å line is less than 5 km s–1, indicating that the hot plasma region is stationary.The relation of this flare to the larger class of flares associated with filament eruptions and emerging magnetic flux is discussed.  相似文献   

2.
Results are presented of an investigation of solar flare X-ray spectra in the region 1.70–1.95 Å, obtained aboard the Intercosmos-4 satellite during the maximum of solar activity (October–November, 1970). With the use of 6 high resolution spectra in the region 1.85–1.87 Å the identification of lines due to 18 transitions of 2p 1s type, consisting of the resonance, intercombination and forbidden Fe xxv ion lines and the satellite Fe xxiv lines has been performed. With the use of the recent laboratory data the averaged wavelengths of the lines were obtained confirming the theoretically calculated ones with an accuracy about ± 0.0004 Å. A variable Doppler shift of the Fe xxv resonance lines was observed for the flare of November 16, 1970, which points to hot plasma motions with velocities up to 400 km s-1.  相似文献   

3.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

4.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

5.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

6.
E. Rolli  A. Magun 《Solar physics》1995,160(1):29-40
The analysis of the dynamic evolution of the chromospheric electron density during solar flares is fundamental for the testing of solar flare models. For this purpose we developed a digital imaging spectrograph for the observation of higher Balmer lines below 400 nm with a time resolution of 1 s and an algorithm for the determination of the electron density from the observed line profiles. On January 5, 1992 a M1/1N flare was observed in H, H and Caii H and the temporal evolution of the electron density was determined. The chromospheric electron density rises several times from less than 3 × 1019 to 1 × 1020 m–3 during the hard X-ray peaks.  相似文献   

7.
We describe and analyse observations of an M1.4 flare which began at 17: 00 UT on 12 November, 1980. Ground based H and magnetogram data have been combined with EUV, soft and hard X-ray observations made with instruments on-board the Solar Maximum Mission (SMM) satellite. The preflare phase was marked by a gradual brightening of the flare site in Ov and the disappearance of an H filament. Filament ejecta were seen in Ov moving southward at a speed of about 60 km s–1, before the impulsive phase. The flare loop footpoints brightened in H and the Caxix resonance line broadened dramatically 2 min before the impulsive phase. Non-thermal hard X-ray emission was detected from the loop footpoints during the impulsive phase while during the same period blue-shifts corresponding to upflows of 200–250 km s–1 were seen in Ca xix. Evidence was found for energy deposition in both the chromosphere and corona at a number of stages during the flare. We consider two widely studied mechanisms for the production of the high temperature soft X-ray flare plasma in the corona, i.e. chromospheric evaporation, and a model in which the heating and transfer of material occurs between flux tubes during reconnection.  相似文献   

8.
E. Kirsch 《Solar physics》1973,28(1):233-246
Solar neutron emission during large flares is investigated by using neutron monitor data from the mountain stations Chacaltaya (Bolivia), Mina Aguilar (Argentine), Pic-du-Midi (France) and Jungfraujoch (Switzerland). Registrations from such days on which large flares appeared around the local noon time of the monitor station are superimposed with the time of the optical flare as reference point.No positive evidence for a solar neutron emission was found with this method, However, by using an extrapolation of the neutron transport functions given by Alsmiller and Boughner a rough estimation of mean upper limits for the solar neutron flux is possible. The flux limits are compared with Lingenfelter's model calculations.From the Chacaltaya measurements it follows: N 02.8 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P0 = 125 MV N 01.4 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV and from Pic-du-Midi measurements: N 06.7 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 125 MV N 04 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV P 0 = characteristic rigidity of the producing proton spectrum on the Sun.The flux limits estimated for some special proton flares are consistent with Lingenfelter's predictions for the acceleration phase but are too small for the slowing down phase. Therefore it is believed that Lingenfelter's assumption of isotropic proton emission from the flare region is not fulfilled.  相似文献   

9.
Two-dimensional evolutions of two flares of October 18, 1990 have been well observed in the Caii K line with a CCD camera at Norikura station of National Astronomical Observatory in Japan. There are two common characteristics for the flares: 3 - 5 min before the impulsive phase, the heating already begins at the footpoints of the flares, but no asymmetry in line emission has been detected. After the onset of the impulsive phase, Caii K line emission at the footpoints shows strong red asymmetry, with the maximum asymmetry occurring at the same time as the peak of the radio bursts. The maximum downward velocity is about 30 50 km s–1. For flare 1, blue and red asymmetries were observed in two sides of the footpoint area. They developed and attained a maximum nearly at the same time and the inferred Doppler velocities are comparable (30 40 km s–1). This implies that two mass jets started from a small region and ejected along a loop but in opposite directions with roughly equivalent momentum. A possible mechanism has been discussed.  相似文献   

10.
Recent atomic data have been used to analyze a solar flare spectrum obtained with the Goddard Space Flight Center's grating spectrometer on the OSO-5 satellite. There exist in the wavelength region 90–200 Å strong lines from each of the ions Fe xviii-Fe xxiv. The Fe xxi lines can be used as an electron density diagnostic for the 107 K plasma. From our analysis of a particular flare, we find a steep positive slope in the emission measure between 106.5 and 107.2 K and an electron density of 4 × 1011 cm–3 at 107 K. We emphasise the need for high spectral and spatial resolution observations of solar flares in this wavelength region, which has to date been largely neglected.  相似文献   

11.
The chromospherically-active binary, V711 Tau, had been observed by using the American Very Large Array (VLA) at five bands from 1.4 to 15 GHz. During the observation, the source was undergoing an intense flare, its radio luminosity up to 1.8 × 1018 erg s–1 Hz–1. The degree of circular polarization in the phase of the most intense flare was very small. With the decaying of the flare the flux density decreased, spectral index became smaller, spectra steeper and reversal frequency lower; the degree of circular polarization increased and its direction was dependent on frequency. These observational facts support the conclusion that the emission during intense flare is synchrotron (or synchro-cyclotron) mechanism. The magnetic intensity is about 10 G near = 1, the average electron energy, 4 MeV, the electron density with larger than 10 keV, 3 × 104–9 × 104 cm–3 and the electronic energy spectrum index in power-law distribution 1.3.  相似文献   

12.
A single loop associated with a flare of 21 January 1974 was studied with NRL spectroheliograms in order to understand the phenomenon of evaporation. The loop seen in the emission lines of Fe xv reached its maximum brightness 15 min after the onset. The loop is different from a flare loop because of the time sequence in which it appeared and is different from a post-flare loop prominence system because of its morphology. The electron density in the loop increases gradually to 4 × 1010 cm–3. The material of the loop is thought to be supplied from the lower atmosphere of the chromosphere or the photosphere. The loop is an associated phenomenon of the main flare event distinguished by a longer rise time (15 min) and a lower peak temperature (2 × 106 K).  相似文献   

13.
In this paper the solar neutron and white-light flare is studied on the basis of radioastronomical observations. It is shown that the 3 June, 1982 flare had an impulsive character. A strong shock wave (M A 2.9) was observed unusually soon after the impulsive phase of the flare. The radio spectrum of this event shows that the primary acceleration process probably occurred in the region with an electron density of n e = 4.4 × 1015 m–3. The pulsations of the type IV radio burst, observed 15 min after the mass ejection process, manifest the reconnection process in the post-flare stage.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

14.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

15.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

16.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   

17.
The intensity ratio of the components of the Mg xii 8.42 Å (1s 2 S 1/2 – 2p 2 P 1/2, 3/2) doublet in solar flare spectra has been investigated using observations recorded from the Intercosmos 7 satellite. The observed values of the ratio fall within the interval 0.38–0.66 and have been compared with recent theoretical predictions based on an optically thin collisional-radiative model. It has been found that for the flare plasma the low values of the ratio cannot be explained since they fall below the smallest theoretical value. The highest values on the other hand require that an unacceptably high electron density be postulated. It is suggested that both high and low values may be caused by the resonance line scattering of the Mg xii quanta in the flare volume, provided that the volume is elongated and not spherical.The intensity of the nearby satellite lines is also investigated. Good agreement between the theoretical and observed intensities is found.  相似文献   

18.
X-ray photographs obtained with a zone plate camera on October 3, 1967 in the wavelength band 49.5–52.5 Å have been investigated photometrically.The most intense X-ray emission corresponds with active regions in H and Ca ii. About one quarter of the total solar flux is emitted by the three brightest X-ray sources (A, E and J). X-ray emission from quiet regions is also observed. Limb brightening is found, also at the poles, which indicates a higher electron density at the poles than during solar minimum.The brightest X-ray regions have a very small core of the order of 20. No relation to magnetic field strengths of sunspots has been found. However, a correlation with active prominences cannot be ruled out. X-ray source A is related either to prominence activity or to flare activity. One X-ray region (J) is probably related to flare activity.Assuming an electron temperature of 3 × 106K to 5 × 106K for coronal active regions an emission measure of a few times 1049 cm–3 is derived, which yields an electron density of a few times 1010 cm–3.  相似文献   

19.
A time sequence of magnetograms and velocity-grams in the H and Fe i 6569 Å lines has been made at a rate of 12 h–1 of McMath Region 10385 from 26 to 29 October, 1969. The 14 flares observed during this period have been studied in relation to the configuration and changes in the magnetic and velocity fields. There was little correlation between flare position and the evolutionary changes in the photospheric magnetic and velocity field, except at large central meridian distances where the velocity observations suggested shearing taking place at flare locations. At central meridian distances > 30° we found that flares are located in areas of low line-of-sight photospheric velocity surrounded by higher velocity hills. The one exception to this was the only flare which produced a surge. Blue-shifted velocity changes in the photosphere of 0.3 to 1 km s–1 were observed in localized areas at the times of 8 of 14 flares studied.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

20.
Lites  Bruce W. 《Solar physics》1981,71(2):329-336
The rapid dissipation of flare energy has been observed in the transition-zone line of C iv at 1548.2 Å using the University of Colorado spectrometer aboard OSO-8. Impulsive brightenings have been resolved with characteristic risetimes as low as 3.5 s. One event is analyzed in detail, in which it is inferred that the electron density is greater than 2 × 1011 cm–3 at T = 60 000 K, and that the flare energy is deposited at a rate of 2 ergs cm–3 s–1 or greater. The temporal behavior of the intensity at the center of the C iv line is consistent with a non-equilibrium ionization of C iii through C v. If this event is a result of the multiple tearing mode instability as the primary energy release mechanism, then the observations indicate a pre-flare magnetic field of about 175 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号