首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
We present the biostratigraphy (ammonites, brachiopods, foraminifers, and ostracodes), lithostratigraphy, sedimentology, sequence stratigraphy, magnetostratigraphy, and isotope stratigraphy of the Almonacid de la Cuba section located in the Iberian Range, central-eastern Spain. This section, which contains a continuous and expanded record of the Pliensbachian-Toarcian boundary (Early Jurassic), has been proposed as a complementary section for the Toarcian GSSP. An excellent ammonite-based biozonation has been obtained. Four ammonite assemblages characterized by the presence of Pleuroceras, Canavaria, Dactylioceras (Eodactylites), and Dactylioceras (Orthodactylites) have been distinguished. The base of the Toarcian is located at level CU35.2, based on the first occurrence of Dactylioceras. The occurrence of taxa from the NW European and the Mediterranean provinces is useful to improve the correlation between both provinces. Foraminiferal and ostracode assemblages are rich and diversified and no significant biostratigraphic events take place at the Pliensbachian-Toarcian boundary. The magnetostratigraphic data presented here are the most complete record of reversals of the earth magnetic field for the Pliensbachian-Toarcian boundary. A good record of the onset of the positive δ13C excursion reported in the Lower Toarcian of many European sections has been obtained. Average paleotemperatures measured at the latest Pliensbachian Spinatum Biochron of about 12.5°C, recorded a marked increase of the seawater temperature which started during the Toarcian, reaching average temperatures of 16.7°C at the Tenuicostatum Biochron. The obtained 87Sr/86Sr values fully agree with the LOWESS calibration curve.  相似文献   

2.
Detailed sampling and analysis of Jurassic pelagic limestones and marls from Italy, Hungary and Switzerland have enabled construction of an isotope stratigraphy across the Pliensbachian-Toarcian boundary with resolution to the zonal level. The oxygen-isotope record is unremarkable. The carbon isotopes, however, show two positive excursions: one, relatively minor, during the Pliensbachian, margaritatus Zone, subnodosus Subzone, the other, more major, during the Toarcian. early falciferum Zone, where a maximum δ13C value of 4·52%PDB is attained. These intervals are known to be favoured periods of organic-rich sedimentation in diverse parts of the globe and the isotopic excursions are interpreted as a response to abnormally high rates of storage of organic carbon in the sedimentary record. A comparable phenomenon has been documented from the Cenomanian-Turonian boundary in the Cretaceous where it has been referred to the influence of an ‘Oceanic Anoxic Event’. Some Italian sections spanning this Lower Jurassic interval contain organic-rich shales in the falciferum Zone; the isotopic signatures from their included, locally manganiferous carbonate betray a considerable diagenetic overprint and they cannot therefore be incorporated in a composite isotopic curve. Carbon isotopes from the organic carbon itself are extremely negative, falling to –33δPDB and, in one section examined in detail, correlate with the calcium-carbonate content of the shales; they may reflect a partial change to a non-calcified planktonic biota during deposition of this lime-poor interval, possibly responding to upwelling and increased fertility of near-surface waters. The onset of upwelling may have been as early as spinatum-tenuicostatum Zone time, that is, at the Pliensbachian-Toarcian boundary.  相似文献   

3.
Cyclostratigraphic analyses of Upper Pliensbachian and Lower Toarcian carbon-13 isotope (δ13C) data, together with radiometric dating, are used to calibrate biozones and magnetic chrons in the Astronomical Time Scale (ATS). In turn, the ATS is used to date sea-level and climate cycles in relation to the Early Toarcian carbon-isotope excursion (T-CIE) and the Karoo-Ferrar Large Igneous Provinces. The resulting chronology however is insufficiently accurate to determine if these global-scale events are causally related. In particular, cyclostratigraphic analyses typically underestimate the durations of biozones by failing to account for hiatuses in depositional discontinuities. To account for hiatuses this paper constructs a δ13C reference curve consisting of correlative segments from several localities and dates them with ammonite zones and subzones. By comparing the reference curve to those from numerous localities, four major discontinuity-prone intervals were identified and named ‘stratigraphic black holes’ (SBH). SBH 1 occurs in the Late Pliensbachian P. spinatum Zone. Early Toarcian SBH 2 occurs in a δ13C maximum interval in middle D. tenuicostatum Zone. The T-CIE is characterized by a decreasing δ13C trend (c. 0.4 myr falling limb) in D. semicelatum Subzone, a minimum δ13C interval (c. 0.4 myr valley) and an increasing δ13C trend (c. 0.4 myr rising limb) in the E. elegantulum Subzone. SBH 3 occurs at base T-CIE rising limb and SBH 4 near its top or above it in a c. 0.4 myr, post-T-CIE plateau in upper E. elegantulum Subzone. Comparisons to published floating chronologies resulted in an Early Toarcian timescale with ~1.0 myr for the D. tenuicostatum Zone, and ~1.6 myr for the H. serpentinum Zone. Initial volcanism in the Karoo Province correlates with the Pliensbachian/Toarcian boundary at ~183.6 Ma, while its second phase was coeval with the T-CIE. Volcanism in the Ferrar Province correlates with the T-CIE.  相似文献   

4.
A chart of infrazonal biostratigraphic subdivision of Cenomanian-Coniacian deposits in the East European paleobiogeographic province is based on distribution of benthic foraminifers. The suggested chart characterizes successive trend of changes in ecologic assemblages of benthic foraminifers and morphologic evolution of certain agglutinated (Gaudryina, Bolivinopsis, Heterostomella, Arenobulimina, Ataxophragmium, Ataxoorbignyna, Marssonella) and secretory (Globorotalites, Valvulinera, Gyroidinoides, Stensioeina, Osangularia, Berthelina, Pseudovalvulineria, Gavelinella, Cibicides, Praebulimina, Reussella) foraminiferal genera. The chart includes 7 zones and 13 subzones, most of which are recognizable over the vast territory from the Mangyshalk to southern Baltic areas. It is correlated with the acknowledged ammonoid and inoceramid zonations. Five stadia of taxonomic changes in foraminiferal assemblages, which are substantiated in this work, show that principal biotic events took place in the mid-late Cenomanian, during the Cenomanian-Turonian and early-middle Turonian transitions, in the late Turonian, and at the early-middle Coniacian boundary time.  相似文献   

5.
A chart of infrazonal biostratigraphic subdivisions in the Cenomanian-Coniacian succession of the East European paleobiogeographic province is substantiated based on distribution of benthic foraminifers. The suggested chart characterizes successive trend of changes in ecologic assemblages of benthic foraminifers and morphologic evolution of certain agglutinated (Gaudryina, Ataxophragmium, Ataxoorbignyina, Arenobulimina, Novatrix, Voloshinovella, Orbignyina, Bolivinopsis) and secretory (Neoflabellina, Globorotalites, Stensioeina, Osangularia, Eponides, Gavelinella, Pseudovalvulineria, Pseudogavelinella, Brotzenella, Cibicides, Cibicidoides, Angulogavelinella, Falsoplanulina, Anomalinoides, Coryphostoma, Bolivinoides, Praebulimina) foraminiferal genera. The chart includes 23 biostratigraphic units (zones and subzones), most of which are recognizable over the vast territory from the Mangyshlak to southern Baltic areas. It is correlated with the acknowledged belemnite, inoceramid, ammonoid and echinoid zonations. Eight stadia of taxonomic changes in foraminiferal assemblages, which are distinguished in this work, show that principal biotic events took place across the middle-late Santonian and Santonian-Campanian boundaries, in the earliest Campanian, at the early-late Campanian boundary time, during the late and terminal Campanian, and in the mid-early Maastrichtian.  相似文献   

6.
Eight zonal dinocyst assemblages and three bio stratigraphic units ranked as “beds with flora” are first distinguished in the Danian—lower Lutetian interval of the Paleogene succession, penetrated by the reference borehole Novousensk no. 1, where eight standard and one local nannoplankton zones are simultaneously recognized. The direct correlation of nannoplankton and dinocyst zones is used to refine the paleon-tological substantiation and stratigraphic position of regional lithostratigraphic units, ranges of hiatuses, and the correlation with the general stratigraphie scale. The nannoplankton of the Danian NP2 Cruciplacolithus tenuis and NP3 Chiasmolithus danicus zones is characteristic of the Algai Formation (Fm). The nannoplankton of the NP4 Coccolithus robustus Zone and dinocysts of the D3a Alterbidinium circulum Zone from the Tsyganovo Fm characterizes the Danian top. The Lower Syzran Subformation (Subfm) corresponds to the upper part of the NP4 Coccolithus robustus Zone (Neochiastizygus junctus local zone) and to the D3b (part) Cerodinium depressum Zone of the Selandian dinocysts. The latter spans part of the Upper Syzran Subformation, whose characteristic nannofossils are the nannoplankton of the NP5 Fasciculithus tympaniformis Zone and the dinocysts of the D3b (part) Isabelidinium? viborgense Zone of the Selandian. The Novouzensk Fm is represented by a succession of the dinocyst Cerodinium markovae Beds and the standard D4c Apectodinium hyperacanthum Zone of the upper Thanetian. The coccolitophorids of the lower Thanetian NP6 Heliolithus kleinpelli Zone occur at the formation base. The Bostandyk Fm includes successive bio stratigraphie units of the Ypresian. In the dinocyst scale, these are the D5a Apectodinium augustum Zone, the Pterospermella Beds (DEla Zone of the North Sea scale), and zones DBlb-c Deflandrea oebisfeldensis, D7c Dracodinium varielon-gitudum, and D8 Dracodinium politum—Charlesdowniea coleothrypta, while units of the nannoplankton scale correspond to the NP12 Martasterites tribrachiatus and NP13 Discoaster lodoensis zones. The Kopterek Fm yields Lutetian nannofossils: the nannoplankton of the NP14 Discoaster sublodoensis Zone and the dinocysts of the Wetzeliella coronata—Areosphaeridium diktyoplokum Beds. Three meaningful hiatuses are established at the Danian base, Selandian top, and in the lower Ypresian.  相似文献   

7.
A sedimentological, biostratigraphical and geochemical (stable isotopes and Rock‐Eval parameters) analysis was performed on four Swiss successions, in order to examine the expression of the Toarcian Oceanic Anoxic Event along a north–south transect, from the Jura through the Alpine Tethys (Sub‐Briançonnais and Lombardian basins). The locations were selected to represent a range of palaeoceanographic positions from an epicontinental sea to a more open marine setting. The Toarcian Oceanic Anoxic Event was recognized by the presence of the characteristic negative carbon‐isotope excursion in carbonate (ca 2 to 4‰) and organic matter (ca 4 to 5‰) at the base of the falciferum ammonite Zone (NJT6 nannofossil Zone). The sedimentary expression of the Toarcian Oceanic Anoxic Event varies along the transect from laminated mudstone rich in total organic carbon (≤11 wt.%) in the Jura, to thin‐bedded marl (≤5 wt.% total organic carbon) in the Sub‐Briançonnais Basin and to hemipelagic reddish marly limestone (total organic carbon <0·05 wt.%) in equivalent levels from the Lombardian Basin. The carbon‐isotope excursion is thus independent of facies and palaeoceanographic position. The low nannofossil abundance and the peak in Calyculaceae in the Jura and the Sub‐Briançonnais Basin indicate low salinity surface waters and stratified water masses in general. Sedimentological observations (for example, obliquely‐bedded laminae and homogeneous mud layers containing rip‐up clasts) indicate the presence of dynamic conditions, suggesting that water mass stratification was episodically disrupted during the Toarcian Oceanic Anoxic Event. The proposed correlation highlights a stratigraphic gap and/or condensed interval between the Pliensbachian–Toarcian boundary and the Toarcian Oceanic Anoxic Event interval (most of the tenuicostatum ammonite Zone is missing), which is also observed in coeval European sections and points to the influence of sea‐level change and current dynamics. This transect shows that the sedimentary expression of the Toarcian Oceanic Anoxic Event is not uniform across the Alpine Tethys, supporting the importance of local conditions in determining how this event is recorded across different palaeoceanographic settings.  相似文献   

8.
Sections through Lower Jurassic epicontinental carbonates from Southern Britain (Junction Bed and equivalent) show a positive carbon-isotope excursion (δ13Ccarbonate), detectable in bulk rock, in the falciferum Zone of the lower Toarcian. Isotopic data from organic matter in more clay-rich sections from Wales and north-east England, together with determinations on belemnite calcite, indicate that highest δ13C values are localized in the upper exaratum Subzone of the falciferum Zone. Levels of particular enrichment in organic carbon were developed in the early to mid-exaratum Subzone and hence pre-date this δ13C maximum. These phenomena reflect the impact of the early Toarcian oceanic anoxic event in the British area. Similar isotopic trends have been recorded in other Toarcian sections from Tethyan Europe and are interpreted as reflecting the chemistry of sea water. On the assumption of isotopic correlation between the English and Tethyan sections, the δ13C maximum would be everywhere dated as latest exaratum Subzone in terms of the north European ammonite scheme. Absolute oxygen-isotope values in carbonates probably reflect both early diagenetic cementation and later temperature-related burial diagenesis, although a palaeotemperature maximum is tentatively identified as characterizing the early falciferum Zone. Subsequent climatic deterioration may have been triggered by drawdown of CO2, related to regional excess carbon burial during the oceanic anoxic event. Using the positive δ13C excursion as a correlative level in sections from different faunal provinces (Britain, Italy and Spain) implies that lower Toarcian zonal stratigraphy is diachronous between northern and southern Europe. There is evidence for partitioning of water masses between the north European shelf and the Tethyan continental margin during the Early Jurassic.  相似文献   

9.
Diatoms and marine palynomorphs from several sections of the Kamyshin Formation (Sengilei-1, Sengilei-2, Balasheika, Kuz’kino, boreholes 38 and 50) are jointly studied for the first time in the Volga middle reaches. According to results, the formation lower part corresponds here to Viborg Zone 4-Viborg Zone 5 (Heilmann-Clausen, 1985)/Alisocysta margarita (part)-Apectodinium hyperacanthum (Powell, 1992) diatom zones of Northern Europe. Higher levels of the formation are correlative with Trinacria ventriculosa and Hemiaulus proteus dinocyst zones (Strelnikova, 1992). Thus, the Kamyshin sedimentary cycle in the Volga middle reaches corresponds to the interval of NP8 (part) and NP9 zones of the general scale. As is established, different terrigenous to siliceous facies of that cycle (sands, diatomites, opokas and clay) are mostly confined to eastern and southeastern areas of the study region. Judging from taxonomic composition, assemblages of diatoms and marine palynomorphs originated in coastal paleosettings with active hydrodynamics and high productivity of water mass. Diatom assemblages from different facies are dissimilar. Three phases of Thanetian transgression are distinguished based on quantitative proportions of different ecologic groups (Paralia/Pyxidicula ratio variations). Within transition from the Trinacria ventriculosa to Hemiaulus proteus Zone, there are recorded considerable changes in composition of diatom assemblages: the appearance of new genera with considerable morphologic innovations (Podosira, Craspedodiscus, Fenestrella, Moisseevia, Solium, Gyrocylindrus) and compositional renewals of genera Pyxidicula, Trinacria, and Hemiaulus. These changes are indicative of a global biotic crisis in the Paleocene-Eocene transition related with thermal maximum and negative C-isotope excursion and extinction of benthic fauna groups.  相似文献   

10.
Early Jurassic climate is characterized by alternating cold and warm periods highlighted by studies based notably on oxygen isotopes measured on belemnite guards and other marine invertebrate shells. These climatic changes include changes in the hydrological cycle, and consequently weathering and runoff conditions. In order to clarify the erosion and weathering conditions during the Pliensbachian, this study determined the mineralogical composition of the clay fraction of 132 samples taken from the entire stage drilled in the Llanbedr (Mochras Farm) borehole (Cardigan Bay Basin). The clay mineral assemblages are composed of various proportions of chlorite, illite, illite/smectite mixed‐layers (R1 I–S), smectite and kaolinite, with possibly occasional traces of berthierine. The occurrence of abundant smectite indicates that the maximum burial temperature never exceeded 70°C. Consequently, clay minerals are considered mainly detrital, and their fluctuations likely reflect environmental changes. The variations in the proportions of smectite and kaolinite are opposite to each other. Kaolinite is particularly abundant at the base of the jamesoni Zone, in part coinciding with the δ13C negative excursion corresponding to the Sinemurian/Pliensbachian Boundary Event, and through the davoei Zone, whilst smectite is abundant in the upper part of jamesoni and base of ibex zones and through the subnodosus/gibbosus subzones of the margaritatus Zone. The kaolinite‐rich intervals reflect an intensification of hydrolysis and an acceleration of the hydrological cycle, while the smectite‐rich intervals indicate a more arid climate. The spinatum Zone is characterized by a distinct clay assemblage with abundant primary minerals, R1 I–S, kaolinite reworked from previously deposited sediments or from Palaeozoic rocks, and probably berthierine originating from contemporaneous ironstone‐generating environments of shallower waters. This mineralogical change by the end of the Pliensbachian likely reflects a transition from a dominant chemical weathering to a deeper physical erosion of the continent, probably related to a significant sea‐level fall consistent with a glacio‐eustatic origin.  相似文献   

11.
Stages in evolution of the Early Jurassic to Aalenian foraminifers and ostracodes are established based on the analyzed diversity dynamics of respective microfauna associations. Evolution of foraminifers is divided in two, the Hettangian-initial early Toarcian and the late early Toarcian-Aalenian stages, while the identical first stage in evolution of ostracodes has been followed by the late early Toarcian-Callovian stage. During the Jurassic, periodic migrations of foraminiferal and ostracod genera and species, which were interrelated with large transgressions and climatic changes, took place in the initial late and mid-late Pliensbachian, initial early Toarcian, and the late Toarcian-early Aalenian. Being isolated to the maximum extent in the second half of the late Aalenian, the Arctic basin lost connections with seas of northwestern Europe. The Early Jurassic to Aalenian biogeography of the Arctic basin is established based on the results of cluster analysis (group average link method, Jaccard coefficient, presence or absence of foraminifers and ostracodes genera) with due account for preceding and subsequent formation history of microbenthos structure in biochores. The distinguished biochores are ranked as realms and provinces of foraminifers and ostracodes. As is established, contours of the realms and provinces populated by different groups of microbenthos did not coincide and changed with time. Ecotones between the realms (e.g., the North Sea province) changed their localitization to be a part of the Arctic or Boreal Atlantic realms in different epochs. The Early-Middle Jurassic sedimentary successions of the Arctic basins reveal several levels of sharp taxonomic changes in composition of microbenthos under influence of the first-order abiotic factors.  相似文献   

12.
This paper presents the results of a palynological study of the natural outcrops of the Lower and Middle Jurassic on the Kelimyar River (Outcrops 5, 6, 7, 14, and 16) and two boreholes, Middle-Nakynskaya and Ygyata-Tyungskaya 1, in Eastern Siberia. The Ukugut, Tyung, Motorchuna, Suntar, Kyrin, and Kelimyar formations were studied. Six biostrata with dinocysts were established for the Upper Sinemurian–Toarcian. The analysis of the stratigraphic ranges of dinocysts in the sections allowed the identification of the stratigraphic ranges for important genera of dinocysts, which enabled the updating of the geochronology of some biostrata. Three main stages of the evolution of dinocysts in the Early Jurassic in the Siberian Paleobasin were characterized by the appearance, diversification, and disappearance of some orders of dinocysts at certain times. Seven biostrata (beds with characteristic palynoassemblages) were established for the upper Sinemurian–Toarcian on the basis of the study of the taxonomic composition of spores and pollen of land plants and successive changes in the composition of the palynospectra.  相似文献   

13.
The Paleocene-Eocene transition is one of the most remarkable Cenozoic periods coinciding with the global thermal maximum (PETM). Based on the complex biostratigraphic analysis of diatoms, silicoflagellates, and dinocysts, this global event is revealed in three sections of the Middle Trans-Urals region (Kamyshlov, Korkino, Chumlyak) represented by marine biosiliceous sediments of the Serov and Irbit formations. The interval of the Trinacra ventriculosa-Hemiaulus proteus-Coscinodiscus uralensis diatom zones is marked by the appearance of new genera Moisseevia, Solium, Fenestrella, Craspedodiscus, Podosira, Pseudotriceratium, intense radiations of Grunoweiella and Coscinodiscus, and development of extreme morphotypes among silicoflagellates. The defined diatom assemblages differ slightly from their coeval counterparts from the Middle Volga region, which casts doubt upon the assumed stable water exchange between these basins. On the contrary, the dinocyst assemblages are lacking zonal index species (Appectodinium homomorphum, A. augustum) and Apectodinium acme characteristic of the transitional Paleocene-Eocene strata in many worldwide localities. The facies settings of his period with intense vertical mixing and relatively low temperatures and salinity are characterized by the dominant role of dinocysts belonging to the genera Areoligera, Deflandrea, Spiniferites, and Operculodinium.  相似文献   

14.
In order to constrain spatial variability in watermass conditions within the European Epicontinental Seaway prior to, during and after the Toarcian Oceanic Anoxic Event, carbon (δ13Cbel, δ13Ccarb) and oxygen (δ18Obel, δ18Ocarb) isotope records were obtained from three sections in the Grands Causses Basin (southern France). These data were then compared with similar records along a north–south transect across the European Epicontinental Seaway. As the conclusions reached here strongly depend on the reliability of belemnite calcites as archives of palaeoceanographic changes, an attempt was made to improve the understanding of isotope signals recorded in belemnite calcite. Intra‐rostral carbon and oxygen‐isotope data from six belemnite specimens belonging to the genus Passaloteuthis were collected. Intra‐rostral carbon‐isotopes are influenced by vital effects, whereas oxygen‐isotopes reflect relative changes in temperature and salinity. Palaeotemperatures calculated from δ18Obel‐isotope records from the Grands Causses Basin confirm relatively low temperatures throughout the Late Pliensbachian. Similar cool water conditions have previously been shown in Germany, England, Spain and Portugal. A temperature increase of up to 6 °C is observed across the Pliensbachian–Toarcian boundary. A pronounced negative shift of at least ?3‰ (Vienna‐Pee Dee Belemnite) is recorded in bulk carbonate carbon during the lower Harpoceras serpentinum zone, typical of the Toarcian Oceanic Anoxic Event. Before and after the Toarcian Oceanic Anoxic Event, a good correlation between δ13Ccarb and δ13Cbel exists, indicating well‐ventilated bottom‐waters and normal marine conditions. Instead, data for the Toarcian Oceanic Anoxic Event indicate the development of a strong north–south gradient in salinity stratification and surface‐water productivity for the Western Tethyan realm. This study thus lends further support to a pronounced regional overprint on carbon and oxygen‐isotope records in epicontinental seaways.  相似文献   

15.
The multidisciplinary approach is used to analyze the structure of the sedimentary cover in the northern Knipovich Rift valley, Molloy Fracture Zone and synonymous basin, Svyatogor and Hovgard rises, Gorynych Hills, Litvin and Pogrebitskii seamounts, and western slope of the Spitsbergen Archipelago studied in Cruise 24 of the R/V Akademik Nikolaj Strakhov. Materials of the bathymetric survey with multibeam echo sounder, as well as continuous seismic and vertical acoustic profiling, revealed two main (NNW- and NNE-trending) systems of fractures in the neotectonic structure of the region. It was established that a system of NNE-oriented fractures, linear zones of the dominant development of keyboard deformations included, is consistent with the strike of magnetic anomalies reconstructed for this region. Tectonic aspects of the Knipovich Rift and prospects of its further development are considered. Based on the wave field pattern of continuous seismic profiling (CSP) records, four seismocomplexes indicating contrasting sedimentation settings and intense tectonic processes at different formation stages of the northern Norwegian-Greenland Sea are conditionally defined in the sedimentary cover of the study region. It was established the Molloy Fracture Zone is responsible for a system of horizontal reflectors of acoustically transparent structureless light spots (“blankings”) in the upper well-stratified part of the sedimentary section, which are characteristic of areas with ascending pore fluids. The micropaleontological study (palynomorphs of higher plants, dinocysts, planktonic foraminifers, and diatoms) revealed the presence of Miocene assemblages in sediments. Benthic foraminifers include late Paleocene-middle Eocene assemblages. The composition of rock-forming components demonstrates a directed succession of mineral-terrigenous associations from the feldspar-quartz type to mesomictic quartz-graywacke type.  相似文献   

16.
This work discusses the complex characteristic of the Upper Cretaceous (Turonian-Lower Maastrichtian) section recovered by two boreholes in the southern part of the Volgograd region (right side of the Volga River) in the Gremyach??e potash deposit. Lithological and paleontological data (benthic foraminifers, radiolarians, and dinocysts) suggest several lithological-facies and biotic reorganizations. The analysis of the distribution of these microfossils through the section allowed the ages of the Zakharovo Group, Mozhzhevelovyi Ovrag, Mezino-Lapshinovka, Pudovkino, Zarya, Nalitovo, and Bereslavka Formations to be specified. Benthic foraminifers characterize zones of the Upper Cretaceous high-resolution scale available for the East European Platform and local (facies) units, while radiolarians and dinocysts reveal stratigraphic units in a bed rank. Using complex paleontological characteristics (benthic foraminifers, radiolarians, dinocysts), the defined biostratigraphic units are correlated between each other and with their counterparts in neighboring and remote regions of different paleobiogeographic regions and provinces. The Upper Cretaceous biostratigraphic scale is supplemented by the first defined dinocyst and radiolarian biostratigraphic units of the East European Platform. The new data provides evidence in favor of a three-substage division of the Campanian Stage instead the two-substage system presently accepted in Russia. It is shown that the traditional position of the lower boundary of the Maastrichtian Stage in the East European Platform is close to that of this boundary in the Standard Stratigraphic Scale. Some aspects of environmental and biotic evolution in the Volgograd region through the Late Cretaceous Epoch are considered.  相似文献   

17.
The isotopic evolution of δ13C and δ18O is reported for the Jurassic and early Cretaceous in two pelagic sections of the External Zones in the Betic Cordilleras (SE Spain). Stable isotope curves from pelagic trough and swell sections display similar patterns. Variations in δ18O and δ13C values from strata at equivalent age probably reflect both early diagenetic cementation and later temperature‐related burial diagenesis. Comparison of global isotope curves with those presented in this work allows the differentiation of global from local events. Thus, the anoxic event during the early Toarcian (falciferum Zone) is characterized by elevated δ13C and depressed δ18O values. The isotopic record also allows the detection of the middle Oxfordian transgression. There are other peaks for the late Toarcian, early Bajocian, Callovian and early Berriasian that can also be used as tools for correlation purposes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The distribution of calcareous nannofossils and foraminifers occurring in the Callovian-Oxfordian deposits in the southwest of Moscow is studied. Nannoplankton-bearing beds and foraminiferal zones are distinguished. The Retecapsa incompta Beds correspond in range to the Ophthalmidium sagittum-Epistomina volgensis and Ophthalmidium strumosum-Lenticulina brestica foraminiferal zones as well as the lower part of Epistomina uhligi-Lenticulina russiensis Zone. The Watznaueria manivitae, Crepidolithus perforata, and Watznaueria fossacincta (lowermost part) beds span interval of the Epistomina uhligi-Lenticulina russiensis Zone. The Watznaueria fossacincta Beds are concurrent to the Lenticulina ponderosa-Flabellamina lidiae Zone of the foraminiferal scale.  相似文献   

19.
The study of the large collections of plant remains gained from cores of numerous boreholes drilled in Western Siberia made it possible to determine the taxonomic composition of the Jurassic flora of this region, the stages of its evolution, and the sequence of floral assemblages, which characterize the regional stratigraphic horizons indirectly correlated via series of parallel faunal, microfaunal, spore and pollen zonal scales with a general stratigraphic scale. The compositions of floral assemblages was established in the Hettangian-lower part of the upper Pliensbachian, upper part of the upper Pliensbachian, lower Toarcian, upper Toarcian, Aalenian, Bajocian, Bathonian, and Callovian-Oxfordian sediments. Criteria were elaborated to substantiate the Triassic-Jurassic and Lower-Middle Jurassic boundaries. Lithologically and biostrati-graphically, the Middle-Upper Jurassic boundary is poorly expressed.  相似文献   

20.
Five pithonellid blooms recognised in the Chalk Group of the Isle of Wight are correlated via foraminiferal biostratigraphy to regional and global events. Blooms were recognised in the Holywell Nodular Chalk to basal New Pit Chalk formations (foraminiferal zones BGS7 to BGS9); M. guerangeri to Mytiloides standard (macrofaunal zones); middle Lewes Chalk (questionably foraminifera Zone BGS12; S. plana standard macrofaunal Zone); basal Seaford Chalk (BGS14; base M. coranguinum standard macrofaunal Zone); lower Newhaven Chalk (base BGS18; base U. socialis standard macrofaunal Zone); and uppermost Newhaven to basal Culver formations (BGS19-20; O. pilula to low G. quadrata standard macrofaunal zones). The blooms appear to be coeval with oceanographic change and the general trend towards an increase in the proportion of planktonic taxa may suggest upwelling and/or dysaerobic bottom waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号