首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The impact of natural source emissions on atmospheric mercury concentrations and the biogeochemical cycle of mercury is not known. To begin to assess this impact, mercury emissions to the atmosphere were scaled up for three areas naturally enriched in mercury: the Steamboat Springs geothermal area, Nevada, the New Idria mercury mining district, California, and the Medicine Lake volcano, California. Data used to scale up area emissions included mercury fluxes, measured in-situ using field flux chambers, from undisturbed and disturbed geologic substrates, and relationships between mercury emissions and geologic rock types, soil mercury concentrations, and surface heat flux. At select locations mercury fluxes were measured for 24 h and the data were used to adjust fluxes measured at different times of the day to give an average daily flux. This adjustment minimized daily temporal variability, which is observed for mercury flux because of light and temperature effects. Area emissions were scaled spatially and temporally with GIS software. Measured fluxes ranged from 0.3 to approximately 50 ng m-2 h-1 at undisturbed sites devoid of mercury mineralization, and to greater than 10,000 ng m-2 h-1 from substrates that were in areas of mercury mining. Area-averaged fluxes calculated for bare soil at Steamboat Springs, New Idria, and Medicine Lake of 181, 9.2, and 2 ng m-2 h-1, respectively, are greater than fluxes previously ascribed to natural non-point sources, indicating that these sources may be more significant contributors of mercury to the atmosphere than previously realized.  相似文献   

2.
Incidents of hazardous accumulations of CO2 in homes built on or near reclaimed mine land, in the last decade, have been shown to be linked to neutralization reactions between acidic mine drainage and carbonate material. Recent research has shown that CO2 fluxes on reclaimed mine land with this hazard are, sometimes, spatially autocorrelated (i.e., the spatial variability is not random). This result implies geostatistics can be used to delineate hazardous areas where fluxes are likely to exceed established thresholds. This study applies sequential Gaussian simulation to delineate this emerging hazard on a site in southwestern Indiana, USA. Due to lack of regulatory threshold limits for CO2 flux at the current time, the authors conduct a sensitivity analysis of the threshold limit using the 75th, 90th and 95th percentiles of the measured fluxes for the first day of monitoring. These limits are used to produce hazard maps, which are validated with the known hazard at the site. This work further shows the potential of surface CO2 flux monitoring as a cheap and effective strategy to monitor and delineate such hazards to avoid residential and commercial real estate development in high risk zones.  相似文献   

3.
Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM = Hg0(g) + HgII(g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermal-magmatic volatiles has been occurring since 1992 from the Southern summit crater. We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~ 63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~ 3.2 × 10− 6), measured close to the source vent, with the H2S plume flux (~ 0.7 t d− 1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr− 1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4 × 10− 7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.  相似文献   

4.
运用Tekran 2537 A与动力学通量箱联测技术,对广州市5个绿化带和草地土壤—大气界面汞交换通量进行了实地监测,结果表明,广州市5个监测点土壤—大气界面汞交换通量密度均值为7.341±9.714 ng·m-2·h-1,不同地点土壤—大气汞交换通量密度有显著差异。汞交换通量密度随土壤汞含量的增加而增大,气象条件显著影响汞交换通量,汞交换通量密度与光照和土壤温度呈显著正相关关系,与土壤pH呈负相关关系,降雨和植被显著影响汞交换通量。  相似文献   

5.
土壤温室气体昼夜变化及其环境影响因素研究   总被引:16,自引:3,他引:13       下载免费PDF全文
通过对北京东灵山草地和桦树林土壤气体CO2,N2O和CH4浓度及其排放通量的昼夜连续观测,探讨了生长季节草地和森林土壤温室气体昼夜变化及其环境影响因素。研究表明:1)土壤CO2排放通量昼高夜低,N2O排放通量有明显小时尺度波动,但昼夜变化不突出;土壤CO2和N2O浓度昼夜变化不明显,且与排放通量波动不一致;土壤是大气CH4的一个汇,相对厌氧的环境可能有利于土壤吸收CH4。2)无雨时气温昼夜变化通过影响土壤表层的气体扩散和CO2产生过程,来影响土壤CO2和N2O的地表排放通量,而对土壤10cm以下CO2和N2O的产生影响不大。小时尺度的土壤CO2和N2O浓度波动则可能还有其他影响因素或机制。3)降雨时土壤渗水引起的土壤空气对流取代气体浓度扩散成为土壤与大气空气交换的主要方式,导致土壤CO2和N2O排放通量的同步波动。降雨渗水较多时,较多的溶解氧随着雨水进入土壤内,会促进土壤CO2的生成和抑制N2O的产生。4)土壤CO2与N2O浓度存在显著的正相关关系,反映出土壤CO2和N2O有相对稳定的产率比。土壤有效碳可能是造成土壤CO2与N2O浓度正相关的主要原因,土壤空气的氧分压则可能是造成土壤CO2和N2O浓度波动不一致的重要因素。  相似文献   

6.
Experiments utilizing meteorologically normalized sampling conditions were used to illustrate the role and function of urban pavement, bare soil and turf grass surface properties with respect to the air-surface exchange of total gaseous Hg (TGM). After ensuring uniform meteorological effects to each surface, resultant TGM fluxes from turf grass, bare soil and pavement were specifically representative of their diverse physical and biogeochemical properties. Results spanning the entire sampling year show distinct TGM flux signatures for each surface (5.69 ± 5.79 (ng/m2 h) for bare soil, 0.53 ± 1.25 for turf grass, 0.26 ± 0.41 for pavement). Based on medians, the surface limitations of pavement decreased TGM flux by a factor of 22 compared to bare soil and by a factor of 2 compared to turf grass. Turf surface limitations decreased TGM flux by a factor of 11 compared to bare soil. By comparing these results to a parallel study, meteorological effects were found to develop 24% of the TGM flux signature for pavement, 53% for turf and 60% for bare soil. The remaining percentage contributions to each TGM flux signature were from the cumulative surface property effects of each surface. These results suggest that the greater the TGM flux magnitude for a particular surface, the more measurements are needed under a wide variety of meteorological conditions to develop a broad understanding of its TGM flux characteristics. Seasonal observation allowed closer investigation of a large shift to TGM deposition for the turf surface during the fall season. The large shift toward deposition was suspected to be linked to the formation of a thatch layer on the unexposed soil surface just beneath the turf layer.  相似文献   

7.
A Human Health Risk Assessment (HHRA) was required for a closed landfill located in Cerdanyola del Vallès (Barcelona, Spain). The HHRA had two objectives, to evaluate the present risk of the identified receptors in the area and to safely develop the future urban planning of the area, therefore 3 scenarios for the current situation and 4 for the future situation were developed.After reviewing the existing data and exploring the needs of information, the assessment in this study was focused on the measurement of volatile organic compounds (VOCs) fluxes from the subsoil (emission from the landfill at 5 points), concentrations of VOCs in the air (immission in 4 urban sites) and concentration of VOCs in soil–gas (measurements at 5 m below ground surface outside the landfill at 8 sites). Around 70 VOCs were analyzed by using multi-sorbent tubes and Thermal Desorption Gas Chromatography (TD–GC–MS). The VOCs that were detected and quantified include alkanes, aromatic hydrocarbons, alcohols, ketones, halocarbons, aldehydes, esters, terpenoids, ethers and some nitrogenated and sulfur compounds, furans and carboxylic acids. Specific mercury flux measurements were performed in a hot spot by using carulite tubes, that were also analyzed by using Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry.Results showed average values of volatile emission fluxes ranging from non-detected to 331 μg m−2 day−1 (dichlorodifluoromethane). In the case of immission, the concentration of VOCs measured in the air of populated area surrounding the landfill ranged values from non-detected to 42.0 μg m−3 (acetic acid). The soil–gas measurements in piezometers around the landfill showed individual VOC values with a maximum 830 μg m−3 for dichlorodifluoromethane.With the obtained fluxes and concentrations in air and soil–gas, USEPA methodology and modeling was used to evaluate equivalent concentration in the scenarios considered. Toxicity values from IRIS database were used to finally obtain chemical risk indicators. Admissible risk indicators were obtained in all scenarios. The VOCs that contributed more to risk indexes in RH2 were trichloroethylene, trimethylbenzene, chloroform, 1,2-dichloroethane and carbon tetrachloride. The carcinogenic risk in RH7 was linked to the presence of benzene and chloroform. The comparison of the measurements of the present work with other landfills evidence that HHRA in ambient air would be needed in order to perform a correct landfill management.  相似文献   

8.
研究青藏高原多年冻土区高寒草甸土壤CO2通量有助于准确估算该区域的土壤CO2排放, 对认识高原土壤碳循环及其对全球气候变化的响应具有重要意义. 利用静态箱-气相色谱法和LI-8100土壤CO2通量自动测量系统对疏勒河上游多年冻土区高寒草甸土壤CO2通量进行了定期观测, 结合气象和土壤环境因子进行了分析. 结果表明: 整个观测期高寒草甸土壤表现为CO2的源, 土壤CO2通量的日变化范围为2.52~532.81 mg·m-2·h-1. 土壤CO2年排放总量为1 429.88 g·m-2, 年均通量为163.23 mg·m-2·h-1; 其中, CO2通量与空气温度和相对湿度、活动层表层2 cm、10 cm、20 cm、30 cm 土壤温度、含水量和盐分均显著相关. 2 cm土壤温度、空气温度和总辐射、空气温度、2 cm土壤盐分分别是影响活动层表层2 cm土壤完全融化期、冻结过程期、完全冻结期、融化过程期土壤CO2通量的最重要因子. 在完全融化期、冻结过程期和整个观测期, 拟合最佳的温度因子变化分别能够解释土壤CO2通量变化的72.0%、82.0%和38.0%, 对应的Q10值分别为1.93、6.62和2.09. 冻融期(含融化过程期和冻结过程期)和完全冻结期的土壤CO2排放量分别占年排放总量的15.35%和11.04%, 在年排放总量估算中不容忽视.  相似文献   

9.
The emission of gas from the earth's crust is a complex process influenced by meteorological and seasonal processes which must be understood for effective application of gas emission to geochemical exploration. Free mercury vapor emission and radon emanation are being measured in a shallow instrument vault at a single nonmineralized site in order to evaluate these influences on gas emission.Mercury concentrations in the instrument vault average 9.5 ng/m3 and range from < 1 ng/m3 to 53 ng/m3 with a strong seasonal effect. Mercury has a direct relationship to vault temperature, air temperature, soil temperature, barometric pressure, water table, and the frozen or thawed state of the soil. Air and soil temperature, barometric pressure, and relative humidity are most important in influencing mercury emission while soil moisture is also important in radon emanation. Diurnal cycles are common but do not occur on all days. A heavy precipitation event on a dry soil seals the soil resulting in a rise in mercury concentration. Precipitation on a soil that is already wet does not increase mercury emission because of the compensation caused by lowering of the soil temperature by the precipitation event. Freezing of the soil changes the physical state of the vault-soil-soil gas-atmosphere system and emits the lowest concentrations of mercury. Phase lag effects are likely important. Stepwise multiple regression of mercury as dependent variable with meteorological and seasonal parameters as independent variables gives a cumulative R value of 0.563 and R2 of 0.317. The short-term noise coupled with phase lags are an important factor.The radon measurements integrated over weekly intervals smooth out much of the short-term noise. Stepwise multiple regression of radon as dependent variable with meteorological and seasonal parameters as independent variables gives a cumulative R value of 0.967 and R2 of 0.934. In this portion of the study the variation in the radon emanation is adequately predicted by meteorological and seasonal parameters.  相似文献   

10.
This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 ± 0.5 ng m−2 h−1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.  相似文献   

11.
北京市土壤Hg污染的区域生态地球化学评价   总被引:8,自引:1,他引:7  
城市土壤Hg异常/污染是中国普遍存在的重大生态环境问题。文章对北京市近1000km2范围内的地表土壤、壤中气、大气干湿沉降、大气颗粒物、大气中的Hg含量水平和空间分布模式进行了系统研究,查明北京地表土壤Hg平均含量为0.41mg/kg,大气干湿沉降物中的Hg平均含量为0.194mg/kg,壤中气Hg的平均含量为559.65ng/m3,大气颗粒物PM10和PM2.5中的Hg含量分别为0.59和0.67ng/m3,大气中的Hg平均含量为3.13ng/m3。北京市自2000年起实现了由燃煤转变为燃气的减排措施,导致干湿沉降物中的Hg沉降通量显著减少,2006年大气干湿沉降物中Hg的沉降通量1.837mg·m-2·a-1,北京市城区(近1000km2)Hg全年沉降为1837kg,空气中总Hg浓度由1998年的8.3~24.7ng/m3下降到2006年的3.13ng/m3,大气颗粒物中Hg含量由2003年的1.18ng/m3下降到2006年的0.59ng/m3(PM10)和0.67ng/m3(PM2.5),表明北京市煤改气减排措施的实施显著改善了大气环境质量。通过对土壤中Hg的存在形式研究,发现土壤中有硫化物(辰砂)及各种Hg盐(HgCl2)的含Hg矿物,Hg也可以各种吸附方式或壤中气方式存在。研究证实北京壤中气Hg与大气Hg存在显著的相关性(n=131,R=0.267,p<0.01),表明壤中气Hg是大气Hg的重要来源之一。利用2005年地表土壤总Hg与Hg释放速率的线性方程估算,土壤Hg平均释放速率为102.42ng·m-2·h-1,2005年土壤释放进大气的Hg通量为936.70kg。在查明土壤中存在大量辰砂矿物的同时,还分布有大量具有高温熔融特征的金属微球粒和玻璃质微球粒,证明燃煤和冶金烟尘是地表土壤Hg的主要来源。土壤中Hg、S、pH和辰砂颗粒浓度在空间上的高度耦合性表明,碱性条件下,土壤中高含量的S和Hg是辰砂形成的重要原因。按国家土壤环境质量标准,北京市I级土壤Hg环境质量的面积为176km2,Ⅱ级为808km2,Ⅲ级为24km2,超Ⅲ为36km2。Ⅲ级、超Ⅲ级主要分布在二环路以内的中心城区。城南(长安街为界)大气Hg环境质量明显优于城北,在北四、北五环之间的部分地区,大气颗粒Hg的环境质量为Ⅲ级或超Ⅲ级。在地表土壤Hg含量较高的中心城区,居民每天因呼吸摄入的Hg高达364ng,对人体健康构成潜在风险。根据我国"十一五"规划中每年实现10%节能减排的目标,对北京市未来50年土壤Hg含量的时空演变趋势预测,预测2050年北京因干湿沉降带来的Hg输入量为16.03kg,地表土壤释放Hg的输出量为37.36kg,明显大于Hg的输入通量,土壤Hg的环境质量将得到根本改善。预测到2040年Ⅲ级土壤Hg环境质量的区域将完全消失,到2060年以Ⅰ级土壤为主。  相似文献   

12.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

13.
The concentration of mercury in contaminated estuarine sediments of Bellingham Bay, Washington was found to decrease with a half-time of about 1.3 yr after the primary anthropogenic source of mercury was removed. In situ measurements of the mercury flux from sediments, in both dissolved and volatile forms, could not account for this decrease. This result suggests that the removal of mercury is associated with sediment particles transported out of the study area. This decrease was modeled using a steady-state mixing model.Mercury concentrations in anoxic interstitial waters reached 3.5 μg/l, 126 times higher than observed in the overlying seawater. Mercury fluxes from these sediments ranged from 1.2 to 2.8 × 10?5 ng/cm2/sec, all in a soluble form. In general, higher Hg fluxes were associated with low oxygen or reducing conditions in the overlying seawater. In contrast, no flux was measurable from oxidizing interstitial water having mercury concentrations of 0.01-0.06 μ/l.  相似文献   

14.
Mercury (Hg) concentrations in air, effluent water, landfill gas, leachate, groundwater, and soil at a hazardous solid waste landfill site in Korea were measured along with air–soil surface Hg exchange fluxes at the site. The concentrations and fluxes were considerably higher than have been found elsewhere in Korea. Gaseous Hg concentrations in the air peaked during the day, coinciding with Hg being released from the landfill surface. This suggests that air–soil exchange increased the Hg concentrations in the atmosphere. The air–soil exchange flux increased abruptly when solar radiation reached the soil surface. The Hg flux peaked about 3 h before the solar radiation peaked, possibly because reducible Hg was abundant at the soil surface. The Hg emission flux activation energy (E a) was low, indicating that the Hg species present and Hg–soil binding were probably not as important (because of the high Hg content of the soil) as in previous studies. The methylmercury to total Hg ratios in the discharged effluent, groundwater, and leachate was clearly higher than typically found in coastal water and freshwater, suggesting bacteria caused active methylation to occur under the reducing conditions in the anaerobic landfill. The results suggested that considerable amounts of Hg are probably transported from the landfill to nearby environmental media and that this will continue if waste with a high Hg content continues to be added to the landfill without being pretreated.  相似文献   

15.
Few data are available on mercury (Hg) dynamics at high-elevation mountain sites. In this project, a whole-watershed approach was used to quantify major fluxes and pools of Hg in Sagehen basin, a closed basin in the Sierra Nevada mountains in California. Over a period spanning 9 months (January-September 2009), we estimated wet deposition inputs to the watershed at 3.8 μg m−2. Dry deposition added additional Hg in the range of 0.30-2.45 μg m−2 during this time period, and was the dominant deposition process during summer time. Seasonal snowpack accounted for only half of the Hg deposited by wet deposition. We suggest that photo-induced reduction of Hg(II) in snow and subsequent volatilization was responsible for this loss. Thus, snowpacks in the Sierra Nevada mountains likely reduce the effective atmospheric mercury flux via wet deposition due to significant emission fluxes prior to snowmelt. As such, wet Hg deposition could be of lesser importance as a Hg source in snow-dominated systems. Finally, stream runoff collected at the outlet of the watershed could account for only 4% of total Hg wet deposition suggesting that a large fraction of mercury deposition was sequestered in the ecosystem, specifically in the soils.  相似文献   

16.
We report the results of monitoring the H2O maser in NGC 7538, which is associated with a star-forming region. The observations were carried out on the 22-meter telescope of the Pushchino Radio Astronomy Observatory. Two intervals of long-term variability of the integrated flux that reflect the cyclic activity of the maser have been distinguished (1981–1992 and 1993–2003); the data for the earlier activity cycle, 1981–1992, have been analyzed. The period of the long-time-scale variations is about 13–14 years. Flares of individual spectral features and of two groups of features with mean radial velocities of ?60 and ?46.6 km/s have been observed. The flares lasted from 0.3 to 1 year. The emission features observed during the 1984–1985 flare at radial velocities between ?62 and ?58 km/s probably form a spatially compact group of spots (<1015 cm) in NGC 7538 IRS 1. The triplet structure of the spectra can be traced. The observed anticorrelations and correlations of the fluxes of the triplet components suggest that the maser spots may be located either in a protoplanetary disk or in a high-velocity gaseous outflow.  相似文献   

17.
Surface coal mining inevitably deforests the land, reduces carbon (C) pool and generates different land covers. To re-establish the ecosystem C pool, post-mining lands are often afforested with fast-growing trees. A field study was conducted in the 5-year-old unreclaimed dump and reclaimed coal mine dump to assess the changes in soil CO2 flux and compared with the reference forest site. Changes in soil organic carbon (SOC) and total nitrogen stocks were estimated in post-mining land. Soil CO2 flux was measured using close dynamic chamber method, and the influence of environmental variables on soil CO2 flux was determined. Woody biomass C and SOC stocks of the reference forest site were threefold higher than that of 5-year-old reclaimed site. The mean soil CO2 flux was highest in 5-year-old reclaimed dump (2.37 μmol CO2 m?2 s?1) and lowest in unreclaimed dump (0.21 μmol CO2 m?2 s?1). Soil CO2 flux was highly influenced by environmental variables, where soil temperature positively influenced the soil CO2 flux, while soil moisture, relative humidity and surface CO2 concentration negatively influenced the soil CO2 flux. Change in soil CO2 flux under different land cover depends on plant and soil characteristics and environmental variables. The study concluded that assessment of soil CO2 flux in post-mining land is important to estimate the potential of afforestation to combat increased emission of soil CO2 at regional and global scale.  相似文献   

18.
Mercury fluxes from air/surface interfaces in paddy field and dry land   总被引:3,自引:0,他引:3  
In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex® multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 ± 22.8 ng m−2 h−1 in the warm season, 15.5 ± 18.8 ng m−2 h−1 in the cold season for dry land, and 23.8 ± 15.6 ng m−2 h−1 in the warm season, 6.3 ± 11.9 ng m−2 h−1 in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower than that for bare land.  相似文献   

19.
Gas flux measurements have for the first time been taken from vents and soil of eastern Romania mud volcanoes, the largest geological structures in Europe releasing methane into the atmosphere. In the quiescent phase, the methane emission from single vents is up to 28 t yr?1. Diffuse soil microseepage is of the order of 102?105 mg m?2 day?1. A total output of at least 1200 tonnes of CH4 per year can be conservatively estimated over the area investigated alone (~ 2.3 km2). Helium fluxes are up to five orders of magnitude higher than the average flux in a stable continental area, pointing to a close link between mud volcanoes and crustal degassing through faults crossing the deep hydrocarbon reservoirs. These data represent a key contribution towards refining global CH4‐emission estimates, which indicate mud volcanoes as a significant and unavoidable source of greenhouse gases for the atmosphere.  相似文献   

20.
The spatial and temporal variability of Hg emissions from urban paved surfaces was assessed through repeated measurements under varying environmental conditions at six sample sites in Toronto, Ontario, Canada. The results show significant spatial variability of the Hg emissions with median values ranging from below detection limit to 5.2 ng/m2/h. Two of the sites consistently had higher Hg emissions (on several occasions >20 ng/m2/h) than the other 4, which were equivalently low (maximum emission: 2.1 ng/m2/h). A surrogate measure of the pavement Hg concentrations was obtained during each day of sampling through the collection of street dust. The median street dust concentration also showed significant spatial variability (ranging from 9.6 to 44.5 ng/g). Regression analysis showed that the spatial variability of the Hg emissions was significantly related to the street dust concentrations. Controlled experiments using Hg amended street dust confirmed the relationship between Hg surface concentration and emission magnitude. Within a given sample site, Hg emissions varied temporally and multiple regression analysis showed that within-site variability was significantly influenced by changes in solar radiation with only a minor effect from surface temperature. Controlled experiments using shade cloths confirmed that solar radiation can have a large influence on the magnitude of Hg emissions within a given site. The emissions measured in Toronto were contextualized through comparison sampling in Austin, Texas. The Hg emissions measured in Austin were within the range detected in Toronto and also showed significant correlation with Hg street dust concentrations between sites. To provide a holistic assessment of Hg emissions from urban environments, samples were also collected from other common urban surfaces (soil, roofs, and windows). Soils consistently had higher emissions than all the other surfaces (7.3 ng/m2/h, n = 39).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号