首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A hydrodynamic model of a two-part underwater manoeuvrable towed system is proposed in which a depressor is equipped with active horizontal and vertical control surfaces, and a towed vehicle is attached to the lower end of a primary cable. In such a system the towed vehicle can be manoeuvred in both vertical and horizontal planes when it is towed at a certain velocity and the coupling effect of excitations at the upper end of the primary cable and disturbances of control manipulations to the towed vehicle can be reduced. In the model the hydrodynamic behavior of an underwater vehicle is described by the six-degrees-of-freedom equations of motion for submarine simulations. The added masses of an underwater vehicle are obtained from the three-dimensional potential theory. The control surface forces of the vehicle are determined by the wing theory. The results indicate that with relative simple control measures a two-part underwater manoeuvrable towed system enables the towed vehicle to travel in a wide range with a stable attitude. The method in this model gives an effective numerical approach for determining hydrodynamic characteristics of an underwater vehicle especially when little or no experimental data are available or when costs prohibit doing experiments for determining these data.  相似文献   

2.
This paper presents a discrete-time quasi-sliding mode controller for an autonomous underwater vehicle (AUV) in the presence of parameter uncertainties and a long sampling interval. The AUV, named VORAM, is used as a model for the verification of the proposed control algorithm. Simulations of depth control and contouring control are performed for a numerical model of the AUV with full nonlinear equations of motion to verify the effectiveness of the proposed control schemes when the vehicle has a long sampling interval. By using the discrete-time quasi-sliding mode control law, experiments on depth control of the AUV are performed in a towing tank. The controller makes the system stable in the presence of system uncertainties and even external disturbances without any observer nor any predictor producing high rate estimates of vehicle states. As the sampling interval becomes large, the effectiveness of the proposed control law is more prominent when compared with the conventional sliding mode controller  相似文献   

3.
This paper proposes a saturated tracking controller for underactuated autonomous marine surface vehicles with limited torque. First, a second-order open-loop error dynamic model is developed in the actuated degrees of freedom to simplify the design procedure. Then, a saturated tracking controller is designed by utilizing generalized saturation functions to reduce the risk of actuator saturation. This, in turn, improves the transient performance of the control system. A multi-layer neural network and adaptive robust control techniques are also employed to preserve the controller robustness against unmodeled dynamics and environmental disturbances induced by waves and ocean currents. A Lyapunov stability analysis shows that all signals of the closed-loop system are bounded and tracking errors are semi-globally uniformly ultimately bounded. Finally, simulation results are provided for a hovercraft vehicle to illustrate the effectiveness of the proposed controller as a qualified candidate for real implementations in offshore applications.  相似文献   

4.
This work demonstrates the feasibility of applying a sliding mode fuzzy controller to motion control and line of sight guidance of an autonomous underwater vehicle. The design method of the sliding mode fuzzy controller offers a systematical means of constructing a set of shrinking-span and dilating-span membership functions for the controller. Stability and robustness of the control system are guaranteed by properly selecting the shrinking and dilating factors of the fuzzy membership functions. Control parameters selected for a testbed vehicle, AUV-HM1, are evaluated through tank and field experiments. Experimental results indicate the effectiveness of the proposed controller in dealing with model uncertainties, non-linearities of the vehicle dynamics, and environmental disturbances caused by ocean currents and waves.  相似文献   

5.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

6.
The high-speed supercavitating vehicle (HSSV) utilizes advanced technology that enables an underwater vehicle to reach its unprecedented high speed. The vertical motion control of the HSSV is challenging problem because of its complex dynamics with nonlinear planing force, parametric uncertainties, external disturbances, actuator saturation, and sensor noises. This paper deals with dynamical analysis and a robust H∞ loop-shaping synthesis with modified PID (proportional-integral-derivative) algorithm to control the dive plane maneuver of the HSSV. Typically, the control scheme has the low order structure and provides robustness against dynamic uncertainties, which can be implemented using the bilinear matrix inequality (BMI) optimization of an equivalent Schur formula. Simulation results show that the controlled vehicle system provides good performance and high robustness against uncertainties, ensuring no-overshoot and fast in time-domain responses. In addition, the control algorithm can decouple the dynamic interactions in the multi-input multi-output (MIMO) system, overcoming parametric uncertainty, planing force, and actuator saturation while minimizing the effect of the strong external disturbances and measurement noises.  相似文献   

7.
A neural-network-based learning control scheme for the motion control of autonomous underwater vehicles (AUV) is described. The scheme has a number of advantages over the classical control schemes and conventional adaptive control techniques. The dynamics of the controlled vehicle need not be fully known. The controller with the aid of a gain layer learns the dynamics and adapts fast to give the correct control action. The dynamic response and tracking performance could be accurately controlled by adjusting the network learning rate. A modified direct control scheme using multilayered neural network architecture is used in the studies with backpropagation as the learning algorithm. Results of simulation studies using nonlinear AUV dynamics are described in detail. The robustness of the control system to sudden and slow varying disturbances in the dynamics is studied and the results are presented  相似文献   

8.
邓春楠  葛彤  吴超 《海洋工程》2013,31(6):53-58
水下环境复杂多变,由于水流的不可预知性和多变性,潜器的水动力系数往往无法准确获取,使得依赖这种参数的潜器运动控制算法的应用受到了很大的局限。为了解决控制器对模型参数的依赖,设计了一种基于高阶滑模控制算法的模型无关控制器,并通过设置合理的过渡过程,解决了这种控制算法依赖初值的弊端。仿真结果表明,位置和姿态的控制能够快速的收敛,误差很小并且不依赖于初始条件,控制器需调节参数很少,并且算法简单,适用于工程的实际需要。  相似文献   

9.
10.
基于分布式控制力矩陀螺的水下航行器轨迹跟踪控制   总被引:2,自引:0,他引:2  
基于控制力矩陀螺群(CMGs)的水下航行器具有低速或零速机动的能力。采用基于分布式CMGs的水下航行器方案,并研究其水平面的轨迹跟踪控制问题。通过全局微分同胚变换将非完全对称的动力学模型解耦成标准欠驱动控制模型,并根据简化的模型构建其轨迹跟踪的误差动力学模型,将轨迹跟踪控制问题转化为误差模型镇定问题。基于一种分流神经元模型和反步法设计了系统的轨迹跟踪控制律,该控制器不需要对任何虚拟控制输入进行求导计算,且能确保跟踪误差的最终一致有界性。仿真结果表明该控制器能够实现在不依赖动力学参数先验知识的情况下对光滑轨迹的有效跟踪。  相似文献   

11.
For autonomous manipulation in water, an underwater vehicle-manipulator system (UVMS) should be able to generate trajectori9es for the vehicle and manipulators and track the planned trajectories accurately. In this paper, for trajectory generation, we suggest a performance index for redundancy resolution. This index is designed to minimize the restoring moments of the UVMS during manipulation, and it is optimized without impeding the performance of a given task. As a result, the restoring moments of the UVMS are decreased, and control efforts are also reduced. For tracking control of the UVMS, a nonlinear H optimal control with disturbance observer is proposed. This control is robust against parameter uncertainties, external disturbances, and actuator nonlinearities. Numerical simulations are presented to demonstrate the performance of the proposed coordinated motion control of the UVMS. The results show that control inputs for tracking are reduced, and the UVMS can successfully track generated trajectories.  相似文献   

12.
基于模糊神经网络理论对水下拖曳体进行深度轨迹控制   总被引:2,自引:0,他引:2  
以华南理工大学开发的自主稳定可控制水下拖曳体为研究对象,首先通过水下拖曳体在拖曳水池样机中的试验取得试验数据后作为训练样本,采用LM BP算法,建立基于神经网络理论构建的可控制水下拖曳体轨迹与姿态水动力的数值模型。在此基础上设计了一个控制系统,它主要由两部分组成:基于遗传算法的神经网络辨识器和基于模拟退火改进的遗传算法的模糊神经网络控制器。以满足预先设定的拖曳体水下监测轨迹要求为控制依据,由控制系统确定为达到所要求的运动轨迹而应采用的迫沉水翼转角,以此作为输入参数,通过LM BP神经网络模型的模拟计算预报在这一操纵动作控制下的拖曳体所表现的轨迹与姿态特征。数值模拟计算结果表明:该系统的设计达到了所要求的目的;借助这一系统,可以有效地实现对拖曳体的深度轨迹控制。  相似文献   

13.
In this paper, the problem of tracking a desired motion trajectory for an underwater vehicle-manipulator system without using direct velocity feedback is addressed. For this purpose, an observer is adopted to provide estimation of the system's velocity needed by a tracking control law. The combined controller-observer scheme is designed so as to achieve exponential convergence to zero of both motion tracking and estimation errors. In order to avoid representation singularities of the orientation, unit quaternions are used to express the vehicle attitude. Implementation issues are also considered and simplified control laws are suggested, aimed at suitably trading off tracking performance against reduced computational load. Simulation case studies are carried out to show the effectiveness of the proposed controller-observer algorithm. The obtained performance is compared to that achieved with a control scheme in which the velocity is reconstructed via numerical differentiation of position measurements. The results confirm that the chattering on the control commands is significantly reduced when the controller-observer strategy is adopted in lieu of raw numerical differentiation; this leads to lower energy consumption at the actuators and increases their lifetime  相似文献   

14.
The paper treats the question of suboptimal dive plane control of autonomous underwater vehicles (AUVs) using the state-dependent Riccati equation (SDRE) technique. The SDRE method provides an effective mean of designing nonlinear control systems for minimum as well as nonminimum phase AUV models. It is assumed that the hydrodynamic parameters of the nonlinear vehicle model are imprecisely known, and in order to obtain a practical design, a hard constraint on control fin deflection is imposed. The problem of depth control is treated as a robust nonlinear output (depth) regulation problem with constant disturbance and reference exogenous signals. As such an internal model of first-order fed by the tracking error is constructed. A quadratic performance index is chosen for optimization and the algebraic Riccati equation is solved to obtain a suboptimal control law for the model with unconstrained input. For the design of model with fin angle constraints, a slack variable is introduced to transform the constrained control input problem into an unconstrained problem, and a suboptimal control law is designed for the augmented system using a modified performance index. Using the center manifold theorem, it is shown that in the closed-loop system, the system trajectories are regulated to a manifold (called output zeroing manifold) on which the depth tracking error is zero and the equilibrium state is asymptotically stable. Simulation results are presented which show that effective depth control is accomplished in spite of the uncertainties in the system parameters and control fin deflection constraints.  相似文献   

15.
K. D. Do  J. Pan  Z. P. Jiang 《Ocean Engineering》2004,31(16):1967-1997
This paper proposes a nonlinear robust adaptive control strategy to force a six degrees of freedom underactuated underwater vehicle with only four actuators to follow a predefined path at a desired speed despite of the presence of environmental disturbances and vehicle’s unknown physical parameters. The proposed controller is designed using Lyapunov’s direct method, the popular backstepping and parameter projection techniques. The closed loop path following errors can be made arbitrarily small. Interestingly, it is shown that our developed control strategy is easily extendible to situations of practical importance such as parking and point-to-point navigation. Numerical simulations are provided to illustrate the effectiveness of the proposed methodology.  相似文献   

16.
This paper analyses nonlinear dynamics of cable towed body system. The cable has been modeled and analyzed using a new nodal position finite element method, which calculates the position of the cable directly instead of the displacement by the existing finite element method. The newly derived nodal position finite element method eliminates the need of decoupling the rigid body motion from the total motion, where numerical errors arise in the existing nonlinear finite element method, and the limitation of small rotation in each time step in the existing nonlinear finite element method. The towed body is modeled as a rigid body with six degrees of freedom while the tow ship motion is treated as a moving boundary to the system. A special procedure has been developed to couple the cable element with the towed body. The current approach can be used as design tool for achieving improved directional stability, maneuverability, safety and control characteristics with the cable towed body. The analysis results show the elegance and robustness of the proposed approach by comparing with the sea trial data.  相似文献   

17.
Nonlinear control of an active heave compensation system   总被引:2,自引:0,他引:2  
K.D. Do  J. Pan 《Ocean Engineering》2008,35(5-6):558-571
Heave motion of a vessel or a rig has an adverse impact on the response of a drill-string or a riser. To compensate for heave motion, passive and active devices are usually used. Active heave compensators, in which a control system is an essential part, allow conducting operations under more extreme weather conditions than passive ones. This paper presents a constructive method to design a nonlinear controller for an active heave compensation system using an electro-hydraulic system driven by a double rod actuator. The control system reduces the effect of the heave motion of the vessel on the response of the riser by regulating the distance from the upper end of the riser to the seabed. The control development is based on Lyapunov's direct method and disturbance observers. The paper also includes a method to select the control and disturbance observer gains such that actuator saturations are avoided. Stability of the closed loop system is carefully examined. Simulation results illustrate the effectiveness of the proposed control system.  相似文献   

18.
田海涛  葛彤 《海洋工程》2004,22(4):80-85
论述了纵倾控制律设计及自航模试验。首先选择一系列深度,对同一深度采用频域校正法单独设计控制律,使之对不同的速度和漂角具有足够的稳态精度和抗干扰性,这些控制律被集成统一为纵倾控制器,并根据潜深变化进行切换,对于其它深度采用同样的方法设计。控制器首先通过计算机仿真,然后进行自航模试验验证。设计的纵倾控制系统同时在其他试验项目中(水下管线跟踪和动力定位)发挥了重要的作用。  相似文献   

19.
An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control (FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics (CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.  相似文献   

20.
The problem of controlling an autonomous underwater vehicle (AUV) in a diving maneuver is addressed. Having a simple controller which performs satisfactorily in the presence of dynamical uncertainties calls for a design using the sliding mode approach, based on a dominant linear model and bounds on the nonlinear perturbations of the dynamics. Nonadaptive and adaptive techniques are considered, leading to the design of robust controllers that can adjust to changing dynamics and operating conditions. The problem of using the observed state in the control design is addressed, leading to a sliding mode control system based on input-output signals in terms of drive-phase command and depth measurement. Numerical simulations using a full set of nonlinear equations of motion show the effectiveness of the proposed techniques  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号