首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the crystallization behavior and the salt weathering potential of Na2SO4, MgSO4 and an equimolar mixture of these salts in natural rock and porous stone. Geochemical modeling of the phase diagram of the ternary Na2SO4–MgSO4–H2O system was used to determine the equilibrium pathways during wetting (or deliquescence) of incongruently soluble minerals and evaporation of mixed electrolyte solutions. Model calculations include stable and metastable solubilities of the various hydrated states of the single salts and the double salts Na2Mg(SO4)2·4H2O (bloedite), Na2Mg(SO4)2·5H2O (konyaite), Na12Mg7(SO4)13·15H2O (loeweite) and Na6Mg(SO4)4 (vanthoffite). In situ Raman spectroscopy was used to study the phase transformations during wetting of pure MgSO4·H2O (kieserite) and of the incongruently soluble salts bloedite and konyaite. Dissolution of kieserite leads to high supersaturation resulting in crystallization of higher hydrated phases, i.e. MgSO4·7H2O (epsomite) and MgSO4·6H2O (hexahydrite). This confirms the high damage potential of magnesium sulfate in salt damage of building materials. The dissolution of the incongruently soluble double salts leads to supersaturation with respect to Na2SO4·10H2O (mirabilite). However, the supersaturation was insufficient for mirabilite nucleation. The damage potential of the two single salts and an equimolar salt mixture was tested in wetting–drying experiments with porous sandstone. While the high damage potential of the single salts is confirmed, it appears that the supersaturation achieved during wetting of the double salts at room temperature is not sufficient to generate high crystallization pressures. In contrast, very high damage potentials of the double salts were found in experiments at low temperature under high salt load.1  相似文献   

2.
Lake Kitagata, Uganda, is a hypersaline crater lake with Na–SO4–Cl–HCO3–CO3 chemistry, high pH and relatively small amounts of SiO2. EQL/EVP, a brine evaporation equilibrium model (Risacher and Clement 2001), was used to model the major ion chemistry of the evolving brine and the order and masses of chemically precipitated sediments. Chemical sediments in a 1.6-m-long sediment core from Lake Kitagata occur as primary chemical mud (calcite, magadiite [NaSi7O13(OH)3·3H2O], burkeite [Na6(CO3)(SO4)2]) and as diagenetic intrasediment growths (mirabilite (Na2SO4·10H2O)). Predicted mineral assemblages formed by evaporative concentration were compared with those observed in salt crusts along the shoreline and in the core from the lake center. Most simulations match closely with observed natural assemblages. The dominant inflow water, groundwater, plays a significant role in driving the chemical evolution of Lake Kitagata water and mineral precipitation sequences. Simulated evaporation of Lake Kitagata waters cannot, however, explain the large masses of magadiite found in cores and the formation of burkeite earlier in the evaporation sequence than predicted. The masses and timing of formation of magadiite and burkeite may be explained by past groundwater inflow with higher alkalinity and SiO2 concentrations than exist today.  相似文献   

3.
Generation of dust particles from the Owens Lake playa creates a severe air pollution hazard in the western United States. Much of the dust produced from the dry lakebed is derived from salts formed by evaporation of saline groundwater that often contains high concentrations of dissolved arsenic (As). The objectives of this research were to study the spatial distribution of dissolved arsenic in the shallow groundwater, and to examine factors affecting arsenic solubility and speciation. Evapoconcentration, redox potential, pH, and mineral solubility were examined as factors regulating arsenic biogeochemistry. Dissolved arsenic concentrations ranged from 0.1 to 96 mg L−1 and showed a general increase from the shoreline to the center of the lakebed. Arsenic concentrations were strongly correlated to electrical conductivity (EC) and δD suggesting that evapoconcentration is an important process regulating total As concentrations. Arsenite [As(III)] was the dominant form of inorganic arsenic at Eh values less than about −170 mV while arsenate [As(V)] was predominant at higher Eh values. Organic arsenic was negligible (<0.21%) in all shallow groundwater samples. Dissolved arsenic concentrations do not appear to be strongly regulated by solid-phase reactions. Solid-phase arsenic concentrations generally ranged between 4.0 and 42.6 mg kg−1 and a maximum concentration range (20 to 40 mg kg−1) was reached as solution concentration increased up to 80 mg L−1, indicating minimal sorption and/or precipitation of arsenic. Chemical equilibrium modeling indicated that orpiment (As2S3) was the only solid phase with a positive saturation index (indicating over-saturation), but only at high arsenic and sulfide concentrations. The findings of this research are important for assessing the potential environmental impacts of elevated arsenic concentrations on dust mitigation efforts taking place at Owens Dry Lake.  相似文献   

4.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

5.
《Applied Geochemistry》2001,16(7-8):947-961
During dry season baseflow conditions approximately 20% of the flow in Boulder Creek is comprised of acidic metals-bearing groundwater. Significant amounts of efflorescent salts accumulate around intermittent seeps and surface streams as a result of evaporation of acid rock drainage. Those salts include the Fe-sulfates — rhomboclase ((H3O)Fe3+(SO4)2·3H2O), ferricopiapite (Fe3+5(SO4)6O(OH)·20H2O), and bilinite (Fe2+Fe23+(SO4)4·22H2O); Al-sulfates — alunogen (Al2(SO4)3·17H2O) and kalinite (KAl(SO4)2·11H2O); and Ca- and Mg-sulfates — gypsum (CaSO4·2H2O), and hexahydrite (MgSO4·6H2O). The dissolution of evaporative sulfate salt accumulations during the first major storm of the wet season at Iron Mountain produces a characteristic hydrogeochemical response (so-called “rinse-out”) in surface waters that is subdued in later storms. Geochemical modeling shows that the solutes from relatively minor amounts of dissolved sulfate salts will maintain the pH of surface streams near 3.0 during a rainstorm. On a weight basis, Fe-sulfate salts are capable of producing more acidity than Al- or Mg-sulfate salts. The primary mechanism for the production of acidity from salts involves the hydrolysis of the dissolved dissolved metals, especially Fe3+. In addition to the lowering of pH values and providing dissolved Fe and Al to surface streams, the soluble salts appear to be a significant source of dissolved Cu, Zn, and other metals during the first significant storm of the season.  相似文献   

6.
We report on the crystallization behavior and the salt weathering potential in natural rock and porous stone of single salts (NaNO3, Na2SO4) and salt mixtures in the ternary NaNO3–Na2SO4–H2O system. Geochemical modeling of the phase diagram of the ternary NaNO3–Na2SO4–H2O system was used to determine the equilibrium pathways during wetting (or deliquescence) of incongruently soluble minerals and evaporation of mixed electrolyte solutions. Experiments were carried out in order to study the phase changes during dissolution either induced by deliquescence or by the addition of liquid water. In situ Raman spectroscopy was used to study the phase transformations during wetting of pure Na2SO4 (thenardite) and of Na3NO3SO4·H2O (darapskite). In both experiments crystallization of Na2SO4·10H2O (mirabilite) from highly supersaturated solutions is demonstrated confirming the high salt weathering potential of thenardite and darapskite wetting. In order to study the damage potential of darapskite experimentally, wetting–drying experiments with porous sandstone with the two single salts (Na2SO4, NaNO3) and two NaNO3–Na2SO4 salt mixtures were carried out. Different destructive and non-destructive techniques were tested for damage monitoring. NaNO3 was found to be the least damaging salt and Na2SO4 is the most damaging one. The classification of the two salt mixtures was less obvious.  相似文献   

7.
8.
Efflorescence, case hardening, and granular disintegration represent common weathering features of Upper Cretaceous quartz sandstones exposed in the Bohemian Switzerland National Park (NW Bohemia, Czech Republic). Salt species (sulphates: gypsum (CaSO4·2H2O), potassium alum (KAl(SO4)2·12H2O), tschermigite (NH4Al(SO4)2·12H2O), alunite (K(Al3(SO4)2(OH)6), and alunogen (Al2(SO4)3·17H2O), minor nitrates: nitrammite (NH4NO3)) determined by X-ray diffraction exhibit vertical and geographic zoning. More soluble salts (chlorides, nitrates, tschermigite) crystallize preferentially on the cliffs exposed to the south, whereas the north face is characterized by the presence of less soluble phases: gypsum and K(Al3(SO4)2(OH)6. Vertical zoning of salt distribution on natural outcrops differs from the salt distribution in masonry. Salt distribution near the base of the cliff (profile to about 2–2.5 m above the ground) is affected by capillary rise from the ground level (first maximum of water-soluble salts at the level of 1–1.5 m above the ground) and by percolation of precipitation through the overhanging rock sequence (second maximum of 2–2.5 m above the ground). Percolation of salt solution from higher parts is affected by the asperity of the rock surface. The concentration of salts (determined by ion exchange chromatography) correlates to the changes of physical properties: bulk porosity, microporosity and water absorption. The porosity, microporosity, moisture content and absorption generally increase with the increasing volume of sulphates and nitrates.  相似文献   

9.
Several double salts have been detected in building materials and most of these salts are incongruently soluble compounds. In contrast to single salts, however, no systematic investigations of the crystallization behavior and deleterious effects of incongruently soluble double salts exist. To assess the damage potential of these salts, a systematic investigation of their highly complex behavior is desirable. This paper deals with the crystallization behavior of various solids in the ternary mixed NaNO3–Na2SO4 system including the formation of the double salt darapskite, Na3NO3SO4·H2O. The crystallization sequence during droplet evaporation experiments at room conditions was determined using Raman and polarization microscopy. The basic idea of this research is to use deviations of the crystallization sequence of a salt or a mixed salt solution from the equilibrium pathway as an indicator to detect the degree of supersaturation. The observed crystallization pathway includes the formation of the metastable phases Na2SO4(III), Na2SO4(V) and darapskite. The experimental observations are discussed on the basis of the NaNO3–Na2SO4–H2O phase diagram and the results provide evidence for crystal growth from highly supersaturated solutions in both systems. If the crystals growing under these conditions are confined, these supersaturations result in substantial crystallization pressures.  相似文献   

10.
According to the compositions of the underground brine resources in the west of Sichuan Basin, solubilities of the ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were investigated by isothermal method at 348 K. The equilibrium solid phases, solubilities of salts, and densities of the solutions were determined. On the basis of the experimental data, the phase diagrams and the density-composition diagrams were plotted. In the two ternary systems, the phase diagrams consist of two univariant curves, one invariant point and two crystallization fields. Neither solid solution nor double salts were found. The equilibrium solid phases in the ternary system NaBr–Na2SO4–H2O are NaBr and Na2SO4, and those in the ternary system KBr–K2SO4–H2O are KBr and K2SO4. Using the solubilities data of the two ternary subsystems at 348 K, mixing ion-interaction parameters of Pitzer’s equation θxxx, Ψxxx and Ψxxx were fitted by multiple linear regression method. Based on the chemical model of Pitzer’s electrolyte solution theory, the solubilities of phase equilibria in the two ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were calculated with corresponding parameters. The calculation diagrams were plotted. The results showed that the calculated values have a good agreement with experimental data.  相似文献   

11.
西藏羊八井地热田热水的化学组成   总被引:12,自引:0,他引:12       下载免费PDF全文
赵平  多吉 《地质科学》1998,33(1):61-72
羊八井地热田深、浅层热水都是Cl-Na类型,具有相同的B/Cl比值,说明深层热水在上升通道中与冷水相混合形成了浅层热水。浅层流体自西北向东南流动,温度逐渐降低。浅层热储内普遍存在着水岩交换反应,对热水的化学组成有一定的影响。石英和玉髓地热温度计分别适用于计算深、浅层的热储温度。纳木错(湖)不是羊八井地热田的补给区。深层热水在井筒内绝热汽化时不会出现SiO2结垢,CaCO3是否会在井筒壁沉淀需要放喷较长时间来检验。文中还阐述了对热水的化学组分进行监测的必要性。  相似文献   

12.
Carbonatites from the Oldoinyo Lengai volcano, northern Tanzania, are unstable under normal atmospheric conditions. Owing to carbonatite interaction with water, the major minerals—gregoryite Na2(CO3), nyerereite Na2Ca(CO3)2, and sylvite KCl—are dissolved and replaced with secondary low-temperature minerals: thermonatrite Na2(CO3) · H2O, trona Na3(CO3)(HCO3) · 2H2O, nahcolite Na(HCO3), pirssonite Na2Ca(CO3)2 · 2H2O, calcite Ca(CO3), and shortite Na2Ca2(CO3)3. Thermodynamic calculations show that the formation of secondary minerals in Oldoinyo Lengai carbonatites are controlled by the pH of the pore solution, H2O and CO2 fugacity, and the ratio of Ca and Na activity in the Na2O–CaO–CO2–H2O system.  相似文献   

13.
《Chemical Geology》2006,225(3-4):256-265
SeO42− ions can substitute for sulphate in the gypsum structure. In this work crystals of different Ca(SO4,SeO4)·2H2O solid solutions were precipitated by mixing a CaCl2 solution with solutions containing different ratios of Na2SO4 and Na2SeO4. The compositions of the precipitates were analysed by EDS and the cell parameters were determined by X-ray powder diffraction. Moreover, a comparative study on dehydration behaviour of selenate rich and sulfate rich Ca(SO4,SeO4)·2H2O solid solutions was carried out by thermogravimetry.The experimental results show that the Ca(SO4,SeO4)·2H2O solid solution presents a symmetric miscibility gap for compositions ranging from XCaSO4·2H2O = 0.23 to XCaSO4·2H2O = 0.77. By considering a regular solution model a Guggenheim parameter a0 = 2.238 was calculated. The solid phase activity coefficients obtained with this parameter were used to calculate a Lippmann diagram for the system Ca(SO4,SeO4)·2H2O–H2O.  相似文献   

14.
Crystallisation of sodium sulfate: supersaturation and metastable phases   总被引:1,自引:0,他引:1  
Crystallisation of sodium sulfate solutions by evaporation under controlled climatic conditions has revealed the existence of crystalline hydrated sodium sulfate salts not previously reported. The sodium sulfate phase crystallising and the concentration of the solution at the point of crystallisation depends on the climatic conditions (temperature and evaporation rate). During the rehydration of the anhydrous sodium sulfate phase, thenardite, another previously unreported phase was formed prior to the nucleation of the stable phase, mirabilite Na2SO4 · 10H2O. The addition of organic inhibitors changes both the crystallisation and the rehydration behavior in this system.  相似文献   

15.
《Geochimica et cosmochimica acta》1999,63(19-20):3407-3416
The apparent solubilities of schwertmannite and ferrihydrite were estimated from the H+, OH, Fe3+, and SO42− activities of the natural stream waters in Korea and mine drainage in Ohio, USA. Both chemical composition of the stream waters and the mineralogy of the precipitates were determined for samples from two streams polluted by coal mine drainage. This study combines these new results with previous data from Ohio, USA to redetermine solubilities. The activities of the dissolved species necessary for the solubility determinations were calculated from the chemical compositions of the waters with the WATEQ4F computer code.Laboratory analyses of precipitates indicated that the main minerals present in Imgok and Osheep creek were schwertmannite and ferrihydrite, respectively. The schwertmannite from Imgok creek had a variable chemical formula of Fe8O8(OH)8−2x(SO4)x· nH2O, where 1.74 ≤ x ≤ 1.86 and 8.17 ≤ n ≤ 8.62. The chemical formula of ferrihydrite was Fe2O3· 1.6H2O. With known mineralogy of the precipitates from each stream, the activities of H+, OH, Fe3+, and SO42− in the waters were plotted on logarithmic activity-activity diagrams to determine apparent solubilities of schwertmannite and ferrihydrite. The best estimate for the logarithm of the solubility product of schwertmannite, logKs, was 10.5 ± 2.5 around 15°C. This value of logKs constrains the logarithm of the solubility product of ferrihydrite, logKf, to be 4.3 ± 0.5 to maintain the stability boundary with schwertmannite observed in natural waters.  相似文献   

16.
At T > 100°C development of thermodynamic models suffers from missing experimental data, particularly for solubilities of sulfate minerals in mixed solutions. Solubilities in Na+-K+-Ca2+-Cl-SO42−/H2O subsystems were investigated at 150, 200°C and at selected compositions at 100°C. The apparatus used to examine solid-liquid phase equilibria under hydrothermal conditions has been described.In the system NaCl-CaSO4-H2O the missing anhydrite (CaSO4) solubilities at high NaCl concentrations up to halite saturation have been determined. In the system Na2SO4-CaSO4-H2O the observed glauberite (Na2SO4 · CaSO4) solubility is higher than that predicted by the high temperature model of Greenberg and Møller (1989), especially at 200°C. At high salt concentrations, solubilities of both anhydrite and glauberite increase with increasing temperature. Stability fields of the minerals syngenite (K2SO4 · CaSO4 · H2O) and goergeyite (K2SO4 · 5 CaSO4 · H2O) were determined, and a new phase was found at 200°C in the K2SO4-CaSO4-H2O system. Chemical and single crystal structure analysis give the formula K2SO4 · CaSO4. The structure is isostructural with palmierite (K2SO4 · PbSO4). The glaserite (“3 K2SO4 · Na2SO4”) appears as solid solution in the system Na2SO4-K2SO4-H2O. Its solubility and stoichiometry was determined as a function of solution composition.  相似文献   

17.
System As–Na–S–Cl–H–O was studied. The research was carried out in three stages: (1) selection of the most likely complexes resulting from arsenic sulfide dissolution, (2) calculation of their thermodynamic constants, and (3) comparison of calculated data with thermodynamic database obtained in tests with the solution of inverse thermodynamic problems using the Selektor program complex. The system As–Na–S–Cl–H–O included more than 230 dependent components, which were divided into two groups, base and functional. The former group includes components of the solution (NaCl, NaOH, Na2S, NaHS, HCl, H2S, H2SO4, sulfates, H2SO3, sulfites, thiosulfates, Na+, Cl,HS, S2−), gas phase (43 components), and solid phase (orpiment, red arsenic, arsenolite, claudetite, arsenic, sulfur, sodium salts). Thermodynamic constants of the base components are contained in the Selektor database (they were borrowed from reference-books). The latter group includes 77 complexes labile in the solution but determining the solubility of arsenic and stability of its solid phases. Physicochemical modeling was performed in H2S (≥0.01 m, pH = 1–10), Na2S, and NaHS solutions at 25–250 °C and saturated-vapor pressure. It has been established that the dissolution of arsenic sulfide mineral phases in subneutral and alkaline solutions at low oxidation potential is favored by the formation of sulfoarsenides, which are more stable than arsenides and arsenates. Thermodynamic constants of functional complexes determining the orpiment solubility were calculated within the experimental error. It is shown that in hydrothermal iron-free systems with a low oxidation potential, the concentration of As in the solution decreases on cooling and with acidity increase.  相似文献   

18.
Mechanical disintegration by crystal growth of salts in pores is generally considered as an important mechanism of rock breakdown both on Earth and on Mars. Crystal growth is also a major cause of damage in porous building materials. Sodium sulfate is the most widely used salt in accelerated weathering tests of natural rocks and building materials. This paper provides an updated phase diagram of the Na2SO4-H2O system based on a careful review of the available thermodynamic data of aqueous sodium sulfate and the crystalline phases. The phase diagram includes both the stable phases thenardite, Na2SO4(V), and mirabilite, Na2SO4·10H2O, and, the metastable phases Na2SO4(III) and Na2SO4·7H2O. The phase diagram is used to discuss the crystallization pathways and the crystallization pressures generated by these solids in common laboratory weathering experiments and under field conditions. New crystallization experiments carried out at different temperatures are presented. A dilatometric technique is used to study the mechanical response of sandstone samples in typical wetting-drying experiments as in the standard salt crystallization test. Additional experiments with continuous immersion and evaporation were carried out with the same type of sandstone. Both, the theoretical treatment and the results of the crystallization experiments confirm that the crystallization of mirabilite from highly supersaturated solutions is the most important cause of damage of sodium sulfate in porous materials.  相似文献   

19.
New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (<0.1 g/kg dissolved solids) to very concentrated brines (>300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800.Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution.The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and bicarbonate are the dominant anions, and mechanisms by which they are extracted from the solution include precipitation of alkali and alkaline-earth carbonates, and degassing, as well as precipitation and re-solution of efflorescent crusts. Much sulfate is apparently lost from solution by sorption as well as subsurface reduction.Seasonal runoff, principally from the valley floor north of Lake Magadi, is considered to be the principal recharge to the Magadi ground water system. Evaporative concentration is the overall process responsible for the chemical evolution of the brines. This includes not only simple evaporation, but also mineral precipitation as films and cements in the unsaturated zone, re-solution, and reprecipitation of efflorescent crusts, with consequent recycling of salts. In fact, a large fraction of the solutes are acquired through dissolution of efflorescent crusts.Data were obtained for borehole brines from as deep as 297 m. They show the existence of two distinct brine bodies below the present lake, one shallow, coexistent with bedded salts, and highly concentrated (260 g/kg average dissolved solids), and the other deeper in lacustrine sediments or fractured lavas, and only half as concentrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号