首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shallowly buried archaeological sites are particularly susceptible to surface and subsurface disturbance processes. Yet, because cultural deposition often operates on short time scales relative to geologic deposition, vertical artifact distributions can be used to clarify questions of site formation. In particular, patterns in artifact distributions that cannot be explained by occupation histories must be explained by natural processes that have affected sites. Buried only 10–50 cm beneath the ground surface for 10,450 14C yr, the Folsom component at Barger Gulch Locality B (Middle Park, Colorado) exhibits many signs of post‐depositional disturbance. Through examination of variation in the vertical distribution of the artifact assemblage, we are able to establish that only a Folsom component is present. Using vertical artifact distributions, stratigraphy, and radiocarbon dating, we are able to reconstruct the series of events that have impacted the site. The Folsom occupation (˜10,450 14C yr B.P.) was likely initially buried in a late‐Pleistocene eolian silt loam. Erosion brought the artifacts to rest on a deflation surface at some time prior to 9400 14C yr B.P. A mollic epipedon formed in sediments that accumulated between 9400 and 7000 14C yr B.P. Some time after 5200 14C yr B.P., this soil was partially truncated, and artifacts that had previously dispersed upward created a secondary lag at its upper contact. This surface was buried again and artifact dispersal continued. © 2005 Wiley Periodicals, Inc.  相似文献   

2.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

3.
This paper compares archaeological evidence of Aboriginal occupation inside rock shelters and outside in adjacent sand sheets, focusing on two locations in the Keep‐River region, northwestern Australia. Luminescence and radiocarbon dating reveal that occupation sequences inside rock shelters are generally younger ( < 10,000 yr B.P.) than outside ( < 18,000 yr B.P.). Differences in occupation chronology and artifact assemblages inside and outside rock shelters result from depositional and postdepositional processes and shifts in site function. An increase in regional sedimentation rate from 10 cm/ka − 1 in the Pleistocene to 20 cm/ka − 1 in the Holocene may account for late buildup of sediments within rock shelters, increased artifact accumulation, and reduced postdepositional disturbance in some settings. More intense use of rock shelters in the Late Holocene is indicated from a change in hunting technology and greater production of rock art. The results indicate that some cultural interpretations might be flawed unless archaeological evidence from rock‐shelter and open‐site excavations is integrated. © 2006 Wiley Periodicals, Inc.  相似文献   

4.
Pollen analysis on a 9.54-m sediment core from lake Chignahuapan in the upper Lerma basin, the highest intermontane basin in Central Mexico (2570 m asl), documents vegetation and limnological changes over the past ∼23,000 14C yr. The core was drilled near the archaeological site of Santa Cruz Atizapán, a site with a long history of human occupation, abandoned at the end of the Epiclassic period (ca. 900 AD). Six radiocarbon AMS dates and two well-dated volcanic events, the Upper Toluca Pumice with an age of 11,600 14C yr B.P. and the Tres Cruces Tephra of 8500 14C yr B.P., provide the chronological framework for the lacustrine sequence. From ca. 23,000 14C yr B.P. to ca. 11,600 14C yr B.P. the plant communities were woodlands and grasslands based on the pollen data. The glacial advances MII-1 and MII-2 correlate with abundant non-arboreal pollen, mainly grasses, from ca. 21,000 to 16,000 14C yr B.P., and at ca. 12,600 14C yr B.P. During the late Pleistocene, lake Chignahuapan was a shallow freshwater lake with a phase of lower level between 19,000 and 16,000 14C yr B.P. After 10,000 14C yr B.P., tree cover in the area increased, and a more variable lake level is documented. Late Holocene (ca. 3100 14C yr B.P.) deforestation was concurrent with human population expansion at the beginning of the Formative period (1500 B.C.). Agriculture and manipulation of the lacustrine environment by human lakeshore populations appear at 1200 14C yr B.P. (550 A.D.) with the appearance of Zea mays pollen and abundant charcoal particles.  相似文献   

5.
Geoarchaeological and chronological evidence from the remote Gilf Kebir Plateau in southwest Egypt suggests a new model for the influence of early and mid‐Holocene precipitation regimes on land‐use strategies of prehistoric settlers in what is now the center of the largest hyperarid area on earth. We hypothesize that the quantitatively higher, daytime, monsoon summer rainfall characteristic of the early Holocene (9300–5400 14C yr B.P./8400–4300 yr B.C.) resulted in less grass growth on the plateau compared to the winter rains that presumably fell in the cool nights during the terminal phase of the Holocene pluvial (5400–4500 yr B.P./4300–3300 yr B.C.). The unparalleled climatic transition at 5400 yr B.P. (4300 yr B.C.) caused a fundamental environmental change that resulted in different patterns of human behavior, economy, and land use in the canyon‐like valleys and on the plains surrounding the plateau. The model emphasizes the crucial impact of seasonal rainfall distribution on cultural landscapes in arid regions and the lower significance of annual precipitation rates, with implications for future numeric climate models. It also serves as an example of how past climate changes have affected human societies. © 2004 Wiley Periodicals, Inc.  相似文献   

6.
Dozens of Paleoindian sites, including the Boca Negra Wash (BNW) Folsom site (LA 124474), are scattered across a basalt plateau (the West Mesa) on the western side of the Albuquerque Basin, and adjacent uplands. The BNW site, like many others in the area, is located near a small (˜60 × 90 m) playa basin that formed in a depression on the basalt surface and was subsequently covered by an eolian sand sheet (Unit 1) dated by OSL to ˜23,000 yr B.P. Most of the basin fill is ˜2 m of playa mud (Units 2 and 3) dating ˜13,970 14C yr B.P. (17,160–16,140 cal yr B.P.) at the sand–mud interface to ˜2810 14C yr B.P. (˜2960–2860 cal yr B.P.) at the top. C/N ratios suggest that the BNW playa basin probably held water more often during the Folsom occupation; stable carbon isotope values indicate C3 vegetation was more common as well, but C4 grasses became dominant in the Holocene. Cores extracted from four playa basins nearby revealed a similar stratigraphy and geochronology, documenting presence of wetlands on playa floors during the Paleoindian occupation of the area. © 2006 Wiley Periodicals, Inc.  相似文献   

7.
Microlithic artifacts, some found in situ, are abundant in the Zhongba archaeological site in southwestern Tibet. The site environment consists of extant wetlands and paleo‐wetland deposits found in depressions between sand dunes derived from the Yarlung Tsangpo floodplain. Constraining 14C dates from wetland vegetation and shell from one site fall between ca. 6600–2600 cal. yr B.P., while a second site is dated 3400–1200 cal. yr B.P. A significant and variable 14C reservoir effect—up to 1400 14C yr—limits these ranges to terminus post quem constraints. The in situ artifacts are supplemented by surface collections fully characterizing raw material and typological variability for each site. Raw material found at Zhongba is chert and chalcedony likely sourced from Cretaceous bedrock near the site. Typologically, microblades are nongeometric and are derived from conical and wedge‐shaped cores similar to those identified in the Qinghai Lake Basin and the Chang Tang Nature Reserve of similar or greater age. The later occupation period at Zhongba is broadly contemporaneous with sites on the Qinghai‐Tibet Plateau containing bronze and iron artifacts, indicating microlithic technology remained an important tool‐making strategy in western Tibet late into the protohistoric period.  相似文献   

8.
Pollen in Quaternary deposits from the subtropical Hanjiang Delta records three major phases in the local vegetation and climate history during the last 55,000 yr: (1) a prevalent cool-to-temperate and humid climate at ca. 24,000 14C yr B.P. is indicated by abundant pollen of temperate trees including conifers; (2) between 20,000 and 15,000 14C yr B.P., a cold, dry environment was associated with low sea level during the last glaciation, leading to subaerial exposure, weathering, and interruption of sedimentation, as well as departure from the region of Dacrydium and Sonneratia; (3) a short-term expansion of grassland at ca. 10,300 14C yr B.P. reduced the predominant Lauraceae-Fagaceae evergreen forest, possibly corresponding to the Younger Dryas cooling. The combined data indicate a maximum sea-level rise in the mid-Holocene (7500–4000 14C yr B.P.) and a marine influence in the late Pleistocene at 45,000–20,000 14C yr B.P. The Holocene warming, however, did not bring back moisture-sensitive taxa, indicating high seasonal aridity probably caused by renewed monsoon conditions.  相似文献   

9.
Two approximately 5‐ to 6‐km drainage segments on Black Mesa preserve unusually complete sequences of late Quaternary alluvium and soils. Radiocarbon‐ and tree‐ring‐dated alluvial and soil stratigraphy suggests entrenched paleoarroyos were beginning to aggrade at about >24,260, 11,070, 9660, 8800, 7060, 3500, 2140, and 1870 14C yr B.P. Using the quantity of sediment removal from post‐A.D. 1900 arroyos as analogue, at least 77–200% of total valley alluvium has been removed and replaced by younger sediments during an estimated 11 late Pleistocene and Holocene erosion epicycles. Given that most (59%) of the 150 recorded prehistoric sites in the two study areas occur on valley floors where only about 3% of surface alluvium predates Lolomai phase Basketmaker II occupation (˜1900–1600 yr B.P.), it may be inferred that pre‐Lolomai phase Basketmaker II sites which may have been located along washes have been removed or buried by fluvial erosion. Identification of five buried hearths in alluvial sections, including White Dog and Lolomai phase Basketmaker II sites (dating about 3500 and 1870 14C yr B.P., respectively) and one possible Early Archaic site, supports this conclusion. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
The Paso Otero Locality is a cluster of archaeological sites within the middle Río Quequén Grande basin located in the northern coastal plain of Argentina. The valley fill is Holocene alluvial, eolian, and palustrine sediment, including the top of the Guerrero Member (∼10,000 14C yr B.P.), upper Río Salado Member (∼3000 14C yr B.P.), and lower La Postrera Formation (∼2400 14C yr B.P.). Regional soils include the Puesto Callejón Viejo (10,000 to 9400 14C yr B.P.) and the Puesto Berrondo (∼4800 14C yr B.P.). Radiocarbon sampling of buried A‐horizons on both sides of the river produced 17 dates considered reliable. The geoarchaeological information allows exploration of the implications for the formation of the archaeological record. Similar geological processes of differential intensity have resulted in contexts of different archaeological resolution and integrity. The Paso Otero Locality provides both a local and regional view of late Quaternary events and processes for the middle basin of the Río Quequén Grande.  相似文献   

11.
Sedimentological, malacological, and pollen analyses from 14C-dated alluvial sections from the Luján River provide a detailed record of environmental changes during the Holocene in the northeastern Pampas of Argentina. From 11,200 to 9000 14C yr B.P., both sedimentary and biological components suggest that the depositional environment was eutrophic, alkaline, and freshwater to brackish shallow water bodies without significant water circulation. During this time, bioclastic sedimentation was dominant and the shallow water bodies reached maximum development as the climate became more humid, suggesting an increase in precipitation. Short-term fluctuations in climate during the last stage of this interval may have been sufficient to initiate changes in the water bodies, as reduction of the volume alternated with periods of flooding. The beginning of the evolution of shallow swamps in the wide floodplain or huge wetlands was contemporaneous with a sea level lower than the present one. From 9000 and 7000 14C yr B.P., mesotrophic, alkaline, brackish, probably anoxic swamps existed. Between 7000 and 3000 14C yr B.P., anoxic calcareous swamps were formed, with subaerial exposure and development of the Puesto Berrondo Soil (3500-2900 14C yr B.P.). A trend to a reduction of water bodies is recorded from 9000 to ca. 3000 14C yr B.P., with a significant reduction after ca. 7000 14C yr B.P. A shift to subhumid-dry climate after 7000 14C yr B.P. appears to be the main cause. During this time, an additional external forcing toward higher groundwater levels was caused by Holocene marine transgression causing changes in the water bodies levels. The climate became drier during the late Holocene (ca. 3000 yr B.P.), when clastic sedimentation increased, under subhumid-dry conditions. Flood events increased in frequency during this time. From ca. A.D. 1790 to present, the pollen record reflects widespread disturbance of the vegetation during the European settlement.  相似文献   

12.
Seismic stratigraphy, sedimentary facies, pollen stratigraphy, diatom-inferred salinity, stable isotope (δ18O and δ13C), and chemical composition (Sr/Ca and Mg/Ca) of authigenic carbonates from Moon Lake cores provide a congruent Holocene record of effective moisture for the eastern Northern Great Plains. Between 11,700 and 950014C yr B.P., the climate was cool and moist. A gradual decrease in effective moisture occurred between 9500 and 710014C yr B.P. A change at about 710014C yr B.P. inaugurated the most arid period during the Holocene. Between 7100 and 400014C yr B.P., three arid phases occurred at 6600–620014C yr B.P., 5400–520014C yr B.P., and 4800–460014C yr B.P. Effective moisture generally increased after 400014C yr B.P., but periods of low effective moisture occurred between 2900–280014C yr B.P. and 1200–80014C yr B.P. The data also suggest high climatic variability during the last few centuries. Despite the overall congruence, the biological (diatom), sedimentological, isotopic, and chemical proxies were occassionally out of phase. At these times the evaporative process was not the only control of lake-water chemical and isotopic composition.  相似文献   

13.
New cross sections and dates from along the Pomme de Terre River clarify the complex local history of valley development and floodplain sedimentation. The observed history begins with a series of ancient bedrock strath terraces that record past bedrock valley positions at 15.5 to more than 58 m above the modern bedrock floor. Each strath is capped by 1–2 m of channel gravel and sand permeated by red clay. Sometime previous to ca. 140,000 yr B.P., a much lower bedrock valley only about 5–6 m above the modern level was excavated. By 140,000 yr B.P., accumulation of red and gray mottled silty clay had commenced, and had reached to 8.5 m above the modern floodplain before 48,900 ± 900 14C yr B.P. Sometime between ca. 49,000 and 45,000 14C yr B.P., erosion caused abandonment of an oxbow meander, and lowered the bedrock valley to about its present depth. Younger yellowish-red and gray mottled silty clay alluvium then began accumulating. This mid-Wisconsinan fill reached to 2.5 m above the modern floodplain sometime before 31,800 ± 1340 14C yr B.P., at which time another erosional phase was in progress. A late Wisconsinan olive clay accumulated between 27,480 ± 1950 and ca. 23,000 14C yr B.P., followed by approximate stability until 13,550 ± 400 14C yr B.P. After stability, an erosional episode began, but by 10,200 ± 330 14C yr B.P., deposition of a distinctive brown clayey silt was underway. This early Holocene fill reached to about the same level as the mid-Wisconsinan fill by 8100 ± 140 14C yr B.P. Erosion occurred between this date and 7490 ± 170 14C yr B.P., but the former floodplain level was rapidly reattained, and was apparently stable until ca. 5000 14C yr B.P. Finally, erosional unconformities and 17 dates from the brown clayey silt, and from younger grayish-brown silty sand underlying the modern floodplain, record subsequent episodes of floodplain erosion at ca. 5000, 2900, 1500 and 350 14C yr B.P. The timing of Pomme de Terre floodplain sedimentary regimes, characterized by net aggradation, erosion, or stability, may have been controlled by climate. In particular, both periods of stability appear to have been coeval to times of strongly zonal upper atmospheric circulation. Intensified zonal circulation would have resulted in less frequent large floods and an increased dominance by floods of small to moderate size. In contrast, there are no obvious parallels to be drawn between this local alluvial history and sea level or glacial outwash induced baselevel changes.  相似文献   

14.
Detailed litho‐ and biostratigraphical analyses from three coastal sites in contrasting coastal settings on the Isle of Skye, Scotland, UK, reveal evidence for several changes in relative sea level during the Late Devensian and Holocene. At the start of the record, relative sea level in the area was high at ca. 12 500 14C (ca. 14 800 cal.) yr BP but then fell, reaching a low point during the Younger Dryas, at ca. 11 000–10 000 14C (ca. 13 000–11 600 cal.) yr BP, when a rock platform, correlated with the Main Rock Platform, was formed. In the early–middle Holocene, relative sea level was rising by ca. 8000 14C (ca. 8800 cal.) yr BP and in northeast Skye a lagoonal surface, correlated with the Main Postglacial Shoreline, was formed at ca. 6600 14C (ca. 7500 cal.) yr BP. By the late Holocene, relative sea level was again falling, but a rise, registered at at least two sites, began probably before ca. 4000 14C (ca. 4500 cal.) yr BP, and a second lagoonal surface in northeast Skye, correlated with the Blairdrummond Shoreline, was formed, although by ca. 3000 14C (ca. 3200 cal.) yr BP relative sea level in the area had resumed its downward trend. The pattern of relative sea‐level changes disclosed is compared with evidence elsewhere in Scotland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Valleys tributary to the Mississippi River contain fossiliferous slackwater lake sediment (Equality Formation) deposited in response to aggradation of the Mississippi River valley during the last glaciation. In the St. Louis Metro East area, the lower part of the Equality Formation is primarily laminated, fossiliferous silt and clay deposited from about 44,150 to 24,310 14C yr B.P. The upper Equality Formation is primarily very fine sand to silt deposited from about 21,200 to 17,000 14C yr B.P. Among the four cores that sample this succession in the St. Louis Metro East area, core MNK-3 (38.64EN, 90.01EW) was selected for detailed study. Three sources are distinguished by the following characteristics: (1) gray smectite-quartz-Se-rich, feldspar-poor material of the Des Moines, Wadena, and James lobes; (2) reddish brown kaolinite-Cu-Fe-rich sediment of the Superior and Rainy lobes; and (3) brown illite-dolomite-Sr-rich sediment of the Lake Michigan and Green Bay lobes. The earliest sediments (44,150 to 41,700 14C yr B.P.) were derived from the central and western provenances and are chronocorrelative with the lower Roxana Silt. A hiatus occurred from about 41,700 to 29,030 14C yr B.P. when much of the middle Roxana Silt (Meadow Member) was deposited on adjacent uplands. The youngest sediment includes evidence of heightened activity of the Superior Lobe at about 29,000 14C yr B.P., the Lake Michigan and Green Bay lobes from about 25,000 to 24,000 14C yr B.P., and the Wadena-Des Moines-James lobes at about 21,000 14C yr B.P.  相似文献   

16.
Although many of the current hypotheses to explain the origin and distribution of the Amazon biodiversity has been based directly or indirectly on geological data, the reconstruction of the geological history of the Amazon region is still inadequate to analyze its relationship with the biodiversity. This work has the main goal to characterize the sedimentary successions formed in the Brazilian Amazon in the Neogene-Quaternary discussing the evolution of the depositional systems through time and analyzing their main controlling mechanisms in order to fill up this gap. Radar image interpretation, sedimentological studies, and radiocarbon dating allowed the mapping of Plio-Pleistocene to Holocene units along the Solimões-Amazonas River, Brazil. This integrated work led to the characterization of five sedimentary successions overlying Miocene deposits of the Solimões/Pebas Formation, which include the following: Içá Formation (Plio-Pleistocene), deposits Q1 (37,400-43,700 14C yr B.P.), deposits Q2 (27,200 14C yr B.P.), deposits Q3 (6730-2480 14C yr B.P.), and deposits Q4 (280-130 14C yr B.P.). These deposits occur mostly to the west of Manaus, forming NW-SE elongated belts that are progressively younger from SW to NE, indicating a subsiding basin with a depocenter that migrated to the NE. The reconstruction of the depositional history is consistent with significant changes in the landscapes. Hence, the closure of a large lake system at the end of the Miocene gave rise to the development of a Plio-Pleistocene fluvial system. This was yet very distinct from the modern drainage, with shallow, energetic, highly migrating, braided to anastomosed channels having an overall northeast outlet. This fluvial system formed probably under climatic conditions relatively drier than today's. During the early Pleistocene, there was pronounced erosion, followed by a renewed depositional phase ca. 40,000 14C yr B.P., with the development of prograding lobes and/or crevasse splays associated with a lake system (i.e., fan-delta) and/or fluvial flood plain areas. After a period of erosion, a fluvial system with eastward draining channels started to develop at around 27,000 14C yr B.P. The fluvial channels were overflooded in mid-Holocene time. This flooding is attributed to an increased period of humidity, with a peak between 5000 and 2500 14C yr B.P. The data presented herein support that, rather than being a monotonous area, the Amazonia was a place with frequent changes in landscape throughout the Neogene-Quaternary, probably as a result of climatic and tectonic factors. We hypothesize that these changes in the physical environment stressed the biota, resulting in speciation and thus had a great impact on modern biodiversity.  相似文献   

17.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

18.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

19.
Geoarchaeological investigations in western Middle Park provide important information for understanding the soil‐stratigraphic context of Paleoindian components, as well as the latest Quaternary environmental change and landscape evolution in a Southern Rocky Mountain intermontane basin. Paleoindian components are associated with the oldest two of four latest Quaternary stratigraphic units (1–4) recognized in co‐alluvial mantles (combined slopewash and colluvium) in uplands and in alluvial valley fills. Limited data suggest accumulation of unit 1 as early as ∼12,500 14C yr B.P. in alluvial valleys and by at least ∼11,000 14C yr B.P. in uplands was followed by brief stability and soil formation. A relatively widespread disconformity marks earliest Holocene erosion and substantial removal of latest Pleistocene deposits in upland and alluvial settings followed by unit 2 deposition ∼10,000–9000 14C yr B.P., perhaps signaling the abrupt onset of an intensified summer monsoon. In situ Paleoindian components in uplands are found in a moderately developed buried soil (the Kremmling soil) formed in units 1 and 2 in thin (≤1m) hillslope co‐alluvial mantles. The Kremmling soil reflects geomorphic stability in upland and alluvial settings ∼9000–4500 14C yr BP, and represents a buried landscape with the potential to contain additional Paleoindian components, although elsewhere in western Middle Park Early Archaic components are documented in morphologically similar soils. Kremmling soil morphology, the relative abundance of charcoal in unit 2 relative to younger units, and charcoal morphology indicate the expansion of forest cover, including Pinus, and grass cover during the early and middle Holocene, suggesting conditions moister than present. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
The primary objective of this study is to further substantiate multistep climatic forcing of late‐glacial vegetation in southern South America. A secondary objective is to establish the age of deglaciation in Estrecho de Magallanes–Bahía Inútil. Pollen assemblages at 2‐cm intervals in a core of the mire at Puerto del Hambre (53°36′21″S, 70°55′53″W) provide the basis for reconstructing the vegetation and a detailed account of palaeoclimate in subantarctic Patagonia. Chronology over the 262‐cm length of core is regulated by 20 AMS radiocarbon dates between 14 455 and 10 089 14C yr BP. Of 13 pollen assemblage zones, the earliest representing the Oldest Dryas chronozone (14 455–13 000 14C yr BP) records impoverished steppe with decreasing frequencies and loss of southern beech (Nothofagus). Successive 100‐yr‐long episodes of grass/herbs and of heath (Empetrum/Ericaceae) before 14 000 14C yr BP infer deglacial successional communities under a climate of increased continentality prior to the establishment of grass‐dominated steppe. The Bølling–Allerød (13 000–11 000 14C yr BP) is characterised by mesic grassland under moderating climate that with abrupt change to heath dominance after 12 000 14C yr BP was warmer and not as humid. At the time of the Younger Dryas (11 000–10 000 14C yr BP), grass steppe expanded with a return of colder, more humid climate. Later, with gradual warming, communities were invaded by southern beech. The Puerto del Hambre record parallels multistep, deglacial palaeoclimatic sequences reported elsewhere in the Southern Andes and at Taylor Dome in Antarctica. Deglaciation of Estrecho de Magallanes–Bahía Inútil is dated close to 14 455 14C yr BP, invalidating earlier dates of between 15 800 and 16 590 14C yr BP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号