首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
The triterpenol geochemistry of the Santa Monica Basin from the Southern California Borderland, off the U.S.A., is described from the study of two sets of trap deployments, five box cores (≈30 cm) and a hydroplastic core (≈1 m). The biogenic sources and diagenetic stability of the triterpenols are discussed.The 17β(H), 21β(H)-hopanols (22R isomer) occur in the carbon number range from 30 to 32 and their abundance is nearly uniform in the shallow sediment sections. However, the three hopanols follow the order of abundance, C32 > C31 C30, in deeper sections. Their concentrations spans from trace levels to 156 μg/g organic carbon (<15 ng to 7 μg/g dry sediment). Tetrahymanol (gammaceran-3β-ol) has been identified in all the samples except in one set of trap particles collected at 100 m water depth, from trace level (<1 μg) to 215 μg/g organic carbon (<20 ng to 9 μg/g dry sediment). Diplopterol is also detected in trace amounts in some samples. The triterpenols in the trap material generally increase with the water column depth and decrease with the subbottom depth in the sediment cores.The extended hopanols are either degradation products of polyhydroxybacteriohopanes or are biosynthesized by bacteria. Tetrahymanol is probably the only suggested biological precursor of gammacerane (the reduced counterpart of tetrahymanol), which has been recognized in numerous crude oils and lithified sediments. Although it has been reported earlier from Green River Shale and from a residual Pleistocene lake sediment, tetrahymanol has so far been positively identified from recent marine sediments only in two recent studies. The decreasing content of tetrahymanol in sedimentary depth profiles in the Santa Monica Basin would favor an origin for this compound in the water column or at the sediment surface. The ubiquitous occurrence of this compound throughout the study area suggests that this triterpenol most probably originates from primitive organisms (protozoa, bacteria?), hitherto not identified or, more likely, not yet analyzed for their lipid composition.  相似文献   

4.
Evidence for a Picritic, Volatile-rich Magma beneath Mt. Shasta, California   总被引:2,自引:1,他引:2  
Large, magnesium-rich olivines are plentiful in several Holocenecinder cones within 20 km of Mt. Shasta Summit. Glasses (formerlysilicate melts) included in the olivines are high alumina basalts(tholeiites and olivine tholeiites). In the most magnesian olivinesthe glass inclusions have large vapor bubbles. Surrounding someof the glass inclusions are broad Fe-rich zones and ghost outlines.These facts indicate crystallization of major proportions ofolivine from the initial trapped melts. The initial melts containedan inferred 24 per cent of MgO and were rich in volatiles. Theinferred entrapment temperature of the initial melt is 1410°C. The initial liquid is a possible mantle derived parentof Mt. Shasta basalts and andesites and of some hidden alpineperidotite.  相似文献   

5.
Modern sediments of Mono Lake show marked variation in lipid composition with depositional environment. Constituents derived from the drainage basin, characterized by high molecular weight alkane hydrocarbons (C25–C31), and the steroids β-sitosterol and brassicasterol, predominate in near-shore environments. In the deepest part of the lake, sediments exhibit a combination of externally-derived constituents, and lipids derived from the lake biota; the latter characterized by low molecular-weight alkanes and alkenes (C15–C17), phytane, and the steroids ergost-7-en-3β-ol and 24-ethylcholest-7-en-3-β-ol. Steranes, 4-methylsteranes, and the C18 and C19 isoprenoids appear to be forming in the intensely reducing bottom sediments at the present time.The compositions of samples from the Pleistocene succession of Mono Basin suggest that sample-to-sample variation within the same stratum is negligible so long as unweathered samples from the same depositional environment are compared. Sediments having equivalent lithologies may or may not have similar compositions, but sediments having similar fossil contents do show similar lipid compositions. Subaerial weathering of sediments causes a marked decrease in the amount of extractable organic material, as well as distinct changes in its hydrocarbon composition. Specifically, weathered sediments exhibit a decrease in relative content of low molecular weight hydrocarbons and a relative increase in nC22.Organic composition of sediments from the Pleistocene stratigraphie column cannot be correlated with depth of burial. Compositional changes with stratigraphie position are probably related to paleo-ecological factors such as population or productivity rather than depth of burial. Lithology and organic composition provide mutually-corroborating evidence regarding glacial advances in the adjacent Sierra Nevada Mountains. During glaciations, the lake sediments are rich in sandstones, and the organic composition shows a predominance of externally-derived debris, with no evidence for contributions from the lake biota.  相似文献   

6.
The alpine-type peridotite at Burro Mountain is a partiallyserpentinized harzburgite-dunite body approximately 2 km indiameter. It lies in a chaotic mélange derived from theFranciscan Formation (Upper Jurassic to Upper Cretaceous) ofthe southern Coast Ranges of California. The peridotite is boundedon the east by a vertical fault in the Nacimiento fault zonethat brings sedimentary rocks of Taliaferro's (1943b) AsuncionGroup (Upper Cretaceous) into contact with the peridotite. Theperidotite appears to be one of a number of tectonic lenses,having a wide range in size, that make up the mélange.These lenses include metagraywacke, metachert, greenstone, amphibolite,and blueschist, as well as ultramafic rocks, and represent awide range of pressure-temperature environments. The outer shell of the peridotite is a sheared serpentinitezone 10–15 m thick. The peridotite was tectonically emplacedat its present level as a cold solid mass and had little effecton the mineral assemblages of the Franciscan Formation. Localdevelopment of lawsonite and aragonite in shear zones may berelated to the peridotite emplacement. Foliated harzburgite forms approximately 60 per cent of theperidotite. It is a lithologically uniform rock that has anolivine: orthopyroxene ratio of approximately 75:25. Accessoryclinopyroxene and chromian spinel generally make up less than5 per cent of the harzburgite. Dunite, composed of olivine,accessory chromian spinel (< 5 per cent), and trace amountsof pyroxene, makes up approximately 40 per cent of the peridotiteand occurs as dikes, sills, and irregular bodies in the harzburgite. Olivine and pyroxene show small but significant compositionalvariations and chromian spinel shows a large range in the cationratio Cr/(Cr+Al+ Fe3+). The compositional variations in theseminerals are related to original differences in bulk chemicalcomposition. The following compositional ranges were determinedfor minerals in the harzburgite: olivine, Fo91.1–Fo91.4;orthopyroxene, En89.8–En91.1; clinopyroxene, Ca47.0Mg50.0Fe3.0–Ca48.7Mg48.2Fe3.1;chromian spinel, Cr/(Cr+Al+Fe3+) 0.37–0.55. The pyroxeneshave a range in A12O3 content of 1.3–3.0 wt per cent.Olivine from dunite ranges from Fo91 to Fo92 7 and the chromianspinel has a range in the Cr/(Cr+Al+Fe3+) ratio of 0.30–0.75.Although all the dunites are lithologically similar, three distincttypes are recognized on the basis of composition of coexistingolivine and chromian spinel. Structural relations between thethree types of dunite suggest three periods of emplacement (possiblyoverlapping) of dunite into harzburgite. The evidence indicatesthat the dunite, and probably also the harzburgite crystallizedfrom an ultramafic magma, probably in the upper mantle. After the magmatic episode and crystallization, the peridotitewas subjected to a deep-seated plastic deformation and recrystallization.The first phase of the deformation produced a pervasive, planarstructural element (S1) that crosscuts many harzburgite-dunitecontacts. It is probable that some of the dunite sills wereemplaced during this deformation. The foliation, S1, is definedby layers of different orthopyroxene content in harzburgite,and by discontinuous layers of chromian spinel in dunite. Flowor slip along S1 produced slip folds in harzburgite—dunitecontacts with axial planes parallel to S1. At a later stage,isoclinal folds developed in S1, and the present olivine microfabricwas probably formed by recrystallization in the stress fieldthat produced the isoclinal folding. In the olivine microfabric,X tends to be perpendicular to the axial planes (S2) of theisoclinal folds and Y and Z tend to form double maxima in S2approximately 90° apart. Mg–Fe2+ distribution betweencoexisting mineral pairs yields a calculated temperature offormation of approximately 1200 °C. Although this temperatureis only a nominal value, it indicates that the mineral pairsequilibrated at a significantly high temperature. In view ofthe deformation and recrystallization, the calculated temperaturepossibly represents subsolidus re-equilibration of the mineralsduring this event. The deformation and recrystallization probablyoccurred shortly after crystallization while the peridotitewas still at a high temperature. A later deep-seated deformation produced small scattered kinkfolds in S1 that tend to disrupt the major olivine microfabric.The kink folding was accompanied or followed by the developmentof kink bands in olivine that reflect intragranular glidingon the system T = [Okl], t = [100]. The kink bands probablyformed at a minimum temperature of 1000 °C. Following the deep-seated deformation, which probably took placein the mantle, the peridotite mass was tectonically detachedand moved upward to its present level in the crust. Cleavages,joints, and faults provided channels for water to pervade theperidotite and allow alteration of the primary minerals.  相似文献   

7.
Ultrapotassic basaltic lavas erupted 3.4–3.6 m.y. ago(K/Ar) in the central Sierra Nevada and originated by partialmelting of a phlogopite-enriched, garnet-bearing upper mantlesource. Ultrapotassic basanites (K2O: 5–9 per cent), whichare spatially related to contemporaneous potassic olivine basalts(K2O: 3–5 per cent) and alkali olivine basalts (K2O: 1–3per cent), contain the K2O-bearing minerals phlogopite, sanidine,and leucite as well as olivine, diopside, apatite, magnetite,and pseudobrookite. The presence and modal abundance of theK2O-bearing minerals closely reflects the east to west increasein K2O throughout the basaltic suite. Many lines of evidence support the derivation of the ultrapotassicbasanites and the related basalts from an upper mantle source:TiO2 in phlogopite phenocrysts and groundmass crystals, 2–3and 7–9 per cent respectively, support phlogopite phenocrystcrystallization at high pressure, whole rock Mg values (100Mg/Mg + 0.85 Fe) range from 66–78, phlogopite-rich pyroxeniticand periodotitic nodules are included in some flows, and geobarometriccalculations indicate depths of generation at 100–125km. Also, model calculations show that the major, rare earth,and trace elements, except for Ba, Rb, and Sr, can be accuratelygenerated by 1.0–2.5 per cent melting of a phiogopite-and garnet-bearing clinopyroxene-rich upper mantle source. Partialmelting occurred after a general upper mantle enrichment beneaththe Sierra Nevada, the phlogopite- and clinopyroxene-rich sourceof the ultrapotassic lavas being the extreme result of the enrichmentprocess. Clinopyroxene enrichment of the upper mantle probablyoccurred by introduction of a partial melting fraction intothe upper mantle source areas. Enrichment of the upper mantlein the alkali and alkali-earth elements was not accomplishedby a partial melt, but resulted from influx of a fluid phaserich in Ba, K, Rb, Sr, and, probably, H2O The continuous rangein K2O of the erupted lavas implies that the upper mantle enrichmentis a cumulative process. The inverse relationship in the SierraNevada between uplift and the K2O content of the erupted basaltsimplies that a critical relationship may exist between upliftand upper mantle enrichment.  相似文献   

8.
A buried archaeological site at Tecolote Canyon provides an ideal case study for relating past human land use patterns to changes in coastal paleogeography. Postglacial sea level transgression, erosion, and other marine and fluvial processes form the context for examining two deeply buried archaeological components excavated at CA‐SBA‐72. Archaeological shellfish assemblages provide proxy data for evaluating the evolution of local marine environments. Pismo clams dominate shellfish assemblages dated to 5800 cal yr B.P., suggesting the presence of a broad and sandy, high‐energy beach environment. At 5500 cal yr B.P., the almost exclusive use of California mussels by humans signals the development of rocky intertidal habitats. During the late Holocene, estuarine species dominate the marine mollusk assemblages at CA‐SBA‐72, reflecting the development of local estuarine conditions or trade with nearby Goleta Slough villages. The buried components at Tecolote Canyon appear to have served as temporary camps for shellfish harvesting and processing. While general changes in coastal paleogeography and human subsistence have been reconstructed for the Santa Barbara Coast, high resolution ecological data from Tecolote Canyon suggest that Native peoples also adapted to localized and shorter‐term shifts in intertidal habitats, changes not evident in most larger or more disturbed surface sites in the region. Linking these changes with shifts in human land use patterns highlights the interaction between humans and a dynamic coastal system. These data demonstrate the importance of small, buried sites in understanding the full spectrum of human subsistence and settlement choices and local environmental change. © 2004 Wiley Periodicals, Inc.  相似文献   

9.
The Burro Mountain ultramafic complex, Monterey County, California, consists of dunites and peridotites which are partially or wholly serpentinized. Primary minerals in both rock types are olivine, enstatite, diopside, and picotite which upon alteration yield chrysotile, lizardite, brucite, magnetite, talc, tremolite, and carbonate. Electron microprobe analyses show that enstatite, En85.8 to En90.8, alters to “bastite” composed only of lizardite (5.0–12.0 weight percent FeO), whereas olivine, Fo90.8 to Fo91.6, forms lizardite+chrysotile+brucite with or without magnetite. The chrysotile ranges from 3.0 to 5.0 weight percent FeO, the brucite from 16.0 to 43.0 weight percent FeO. As Serpentinization proceeds, the alteration products are enriched in FeO relative to MgO. Serpentinization probably originates in a changing \(P_{O_2 }\)-T environment by two different reactions:
  1. (a)
    Olivine+enstatite+H2O+O2?Mg, Fe+2 chrysotile+Mg, Fe+3, Fe+2 lizardite with or without magnetite.  相似文献   

10.
Tomales Bay, California, has been the site oflong-term study of carbon-nitrogen-phospho-rus fluxes in the coastal zone. It has also one of severalcoastal sites being used for comparison of C-N-Pbiogeochemical fluxes. The site releases phosphorusand consumes dissolved nitrogen. It also producesdissolved inorganic carbon, mostly as elevatedalkalinity. The overall interpretation placed on thebiogeochemical fluxes is as follows. The system is netheterotrophic; that is, it consumes more organicmatter than it produces. A pathway of consumption thatis of particular importance to the nitrogen cycle isdenitrification. The combination of net heterotrophyand denitrification is the simultaneous release ofdissolved inorganic phosphorus and the uptake ofdissolved inorganic nitrogen. Much of the dissolvedinorganic carbon released during the net heterotrophyis bound in alkalinity, apparently the result ofsulfate reduction.Because this work can be traced by to the trainingthat one of the authors (SVS) received from KeithChave, it is appropriate to present a summary of theTomales Bay research in memory of Keith.  相似文献   

11.
12.
Mounds that have formed around spring vents occur in a variety of environmental settings, many at sites generally difficult or inaccessible for sampling. In contrast, over 500 tufa mounds occur in the dry bed of Searles Lake, California. The mounds range from minor features to 45 m in height; most are 5 to 12 m high. These mounds, composed of calcite and aragonite, formed associated with spring vents in the Pleistocene lake bottom. Thus, analyses of these mounds in Searles Lake provide a model with regard to the origin and architecture of tufa mounds. The mounds consist of four distinctive tufa facies. The initial deposits consist of porous tufa, including the innermost (porous 1) and the outermost (porous 2) deposits, followed by nodular tufa, then columnar tufa, and laminated crusts. There are two simple sequences of tufa deposition. The first sequence is from porous 1 to nodular to laminated crusts and, finally, to porous 2. A second sequence consists of: porous 1 to columnar to laminated crusts and, lastly, to porous 2. Facies changes are a response to changes in environmental conditions from deep water (porous 1 facies) to an essentially dry lake phase (during and after the formation of laminated crusts facies), to deep water (porous 2 facies) and, at the present time, totally dry. The primary constituents that comprise the tufa deposits include thin laminae, pisoids, spherulites, peloids and stromatolite‐like crusts. On the microscopic scale, these constituents dominantly make up nano‐spheres, micro‐rods and rod‐like crystals, as well as other calcified bodies. These constituents are interpreted to be the calcified remains of bacterial bodies. These findings suggest that microbial participation in the construct of other mounds should be a major concern of investigation, both for terrestrial and extraterrestrial spring‐fed mounds.  相似文献   

13.
The well-defined and intensively studied episode of Se contamination at Kesterson Reservoir (Merced County, California, U.S.A.) provided a unique opportunity to describe the distribution, speciation and geochemical transformations of Se in a variety of geochemical and ecological settings, ranging from permanent ponds to semi-arid grasslands and salt flats. Kesterson Reservoir comprises 500 ha of land contaminated with Se from agricultural drain water. In most places. Se was concentrated in surficial organic detritus and the surficial decimeter of mineral soil. At dry sites, selenate ion predominated below 20 cm depth. Elemental selenium (Se0) also was prominent. The amount of zero-valent Se increased slowly with time. Although selenate is thermodynamically stable in the vadose zone in the presence of oxygen, Se0 is an additional, metastable product of the mineralization of organic selenium. Thiols and inorganic sulfides dramatically increase the solubility of Se0. Decreasing pH inhibits the reaction, explaining the observed decrease in solubility and biological availability of Se in soil and aquatic systems at low pH. Adding thiols or methionine to soil increases the emission of volatile Se compounds several-fold, suggesting that thiols play a major role in the microbial cycling of Se in soil.  相似文献   

14.
The Hodson mining district is in the westernmost foothills of the Sierra Nevada in California, about 17 km west of the town of Angels Camp. This district is part of the West Gold Belt, which lies about 12–16 km west of, and generally parallel to, the better known Mother Lode Gold Belt in central California. The district produced several million dollars worth of Au between about 1890 and 1940.  相似文献   

15.
《Applied Geochemistry》1993,8(5):447-471
Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas222Rn concentration decreases. Both226Ra and228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and228Ra concentrations are <5pCi/l. Four ground water samples were analyzed for210Po and one sample contained a high concentration of 21 pCi/l. Seven samples were analyzed for210Pb; six contained <3pCi/l and one contained 12 pCi/l. Thorium-230 was detected at concentrations of 0.15 and 0.20 pCi/l in two of four samples.Alpha-emitting radionuclides in the ground water originated from the dissolution of U-rich granitic rocks in the Sierra Nevada by CO2, oxygenated water. Dissolution of primary minerals, mainly titanite (sphene) in the granitic rocks, releases U to the water. Dissolved U is probably removed from the water by adsorption on Fe- and Mn-oxide coatings on fracture surfaces and fine-grained sediment, by adsorption on organic matter, and by coprecipitation with Fe and Mn oxides. These coated sediments are transported throughout the basin by fluvial processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water.Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of40K dissolved in the water and ingrowth of238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite. Radon-222 is primarily from the decay of226Ra in the aquifer materials. Radium in the ground water is thought to be mainly from alpha recoil associated with the decay of Th in the aquifer material. Some Ra may be from dissolution (or desorption) or Ra-rich coatings on sediments.  相似文献   

16.
《Applied Geochemistry》1991,6(5):509-521
Bands of calcite and dolomite cements alternating with zones of nearly carbonate-free sand occur in the Stevens sandston aat North Coles Levee, San Joaquin, Valley, California. Temperatures calculated from O isotopes suggest that the calcite cement bands were emplaced episodically as a result of repeated injections of hot water from deeper in the section. Burial analysis suggests that these cements precipitated from 7 Ma to the present over the temperature range of 45 to ∼95°C.Carbon isotope data suggest that the C in the cements is a mixture derived from two sources, detrital shell material (δ13C(PDB)≈) and CO2 liberated from maturing kerogen (δ13C ≈ −24). Plots of δ13C vs time and depth of crystallization show that the cementation sequence was: (1) dolomite cements, possibly concretionary, precipitated at depths <1–2 km and at temperatures <45°C; (2) calcite cements with δ13C(PDB) values as low as −13, crystallized from depths between 1220 and 1820 m (4000 and 6000 ft) and at temperatures between 45 and 80°C; (3) calcite cements with δ13C(PDB) values approaching zero and calculated temperatures of crystallization up to the present reservoir temperature of 95±3°C.A log of δ13C vs calculated depth of crystallization correlates with the stratigraphic column at North Coles Levee. If the correlation is valid the light δ13 in each cement sample can be tied to its source. A model based on this interpretation suggests that the early, light C was derived from maturing kerogen in the Kreyenhagen Formation (Eocene) as it passed through the oil window between 4 and 5 Ma. The subsequent passage of younger sediments with less organic material produced correspondingly smaller amounts of light CO2 which was reflected in the relatively heavier C isotopes in the later cements.It is suggested that the epidsodic injections of hot water carried dissolved gases and minerals, principally calcite, upward from rocks as deep as 2–3 km below the Stevens sandstone and reprecipitated the calcite in more permeable zones in the rock. Degassing of CO2 from rising pore waters likely triggered the precipitation and accounts for the relatively large volumes of cement. The Sibson model for seismic pumping of pore fluids is considered a likely explanation for the observed cementation.  相似文献   

17.
Acidic (pH 4) seeps issue from the weathered Upper Cretaceous-Paleocene marine sedimentary shales of the Moreno Formation in the semi-arid Coast Ranges of California. The chemistry of the acidic solutions is believed to be evidence of current reactions ultimately yielding hydrous sodium and magnesium sulfate salts, e.g. mirabilite and bloedite, from the oxidation of primary pyrite. The selenate form of Se is concentrated in these soluble salts, which act as temporary geological sinks. Theoretically, the open lattice structures of these hydrous minerals could incorporate the selenate (SeO4−2) anion in the sulfate (SO4−2) space. When coupled with a semi-arid to arid climate, fractional crystallization and evaporative concentration can occur creating a sodium-sulfate fluid that exceeds the U.S. Environmental Protection Agency limit of 1000 μg l−1 for a toxic Se waste. The oxidative alkaline conditions necessary to ensure the concentration of soluble selenate are provided in the accompanying marine sandstones of the Panoche and Lodo Formations and the eugeosynclinal Franciscan assemblage. Runoff and extensive mass wasting in the area reflect these processes and provide the mechanisms which transport Se to the farmlands of the west-central San Joaquin Valley. Subsurface drainage from these soils consequently transports Se to refuge areas in amounts elevated to cause a threat to wildlife.  相似文献   

18.
Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust. Received: 26 March 1996 / Accepted: 14 November 1996  相似文献   

19.
《Applied Geochemistry》1988,3(6):573-582
Detailed molecular and isotopic analysis of near surface liquid hydrocarbon seepage is useful not only in determining the presence of petroleum hydrocarbons but also to indicate the type and quality of deeper seated hydrocarbons. Near surface sediment bitumens collected over known production in the offshore Santa Maria basin were shown to be similar to reservoired petroleum in the adjacent onshore. Triterpane, sterane and aromatized sterane compositional similarities between oils and near surface sediment bitumens suggest a common source in the Monterey Formation. An empirical model based on the relation between oil composition (pristane/phytane and bisnorhopane/hopane ratios) and API gravity was applied to the near surface bitumens and accurately predicted the API gravity of the nearest known production. The improvement and refinement of geochemical prospecting techniques has greatly enhanced their use and reliability as exploration tools.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号