首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple thermohydromechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way.  相似文献   

2.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents an elasto‐plastic model for unsaturated compacted soils and experimental results obtained from a series of suction‐controlled triaxial tests on unsaturated compacted clay with different initial densities. The initial density dependency of the compacted soil behaviour is modelled by establishing experimental relationships between the initial density and the corresponding yield stress and thereby between the initial density and the location and slope of normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure surface and the yield surface in the deviatoric plane are given by the extended SMP criterion. A considerable number of the isotropic compression, triaxial compression and extension tests on unsaturated compacted clay with different initial densities were performed using a suction‐controllable triaxial apparatus, to measure the stress–strain–volume change in different stress paths and wetting paths. The model has well‐predicting capabilities to reproduce the mechanical behaviour of specimens compacted under different conditions not only in isotropic compression but also in triaxial compression and triaxial extension. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

6.
Wheeler, Sharma and Buisson proposed an elasto‐plastic constitutive model for unsaturated soils that couples the mechanical and water retention behaviours. The model was formulated for isotropic stress states and adopts the mean Bishop's stress and modified suction as stress state variables. This paper deals with the extension of this constitutive model to general three‐dimensional stress conditions, proposing the generalized stress–strain relationships required for the numerical integration of the constitutive model. A characteristic of the original model is the consideration of a number of elasto‐plastic mechanisms to describe the complex behaviour of unsaturated soils. This work presents the three‐dimensional formulation of these coupled irreversible mechanisms in a generalized way including anisotropic loading. The paper also compares the results from the model with published experiments performed under different loading conditions. The response of the model is very satisfactory in terms of both mechanical and water retention behaviours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Behavior of unsaturated soils is influenced by many factors, and the influences of these factors are usually coupled together. Suction‐controlled triaxial (SCTX) tests are considered to allow researchers to investigate influences of individual variables on unsaturated soils under specified stress path with controls of stresses, pore water, and air pressures. In the past 50 years, SCTX testing method has been established as a standard approach to characterize constitutive behavior of unsaturated soils. Most important concepts for modern unsaturated soil mechanics were developed upon results from the SCTX tests. Among these, one of the most important contributions in the constitutive modeling of elasto‐plastic behavior for unsaturated soils is the Barcelona basic model (BBM) proposed by Alonso et al. in 1990. The BBM successfully explained many features of unsaturated soils and received extensive acceptance. However, the SCTX tests are designed based upon the divide‐and‐conquer approach in which an implicit assumption is used: soil behavior is stress‐path independent. However, it is well‐established that unsaturated soil behavior is elasto‐plastic and stress‐path dependent. It is found that the SCTX tests in fact cannot control the stress path of an unsaturated soil during loading. This incapability, in combination with complicated loading/collapse behavior of unsaturated soils, makes the SCTX tests for characterizing unsaturated soil questionable. This paper discusses the limitations of the SCTX tests in the characterization of unsaturated soils. A possible solution to the problem was proposed based on a newly developed modified state surface approach. The discussions are limited for isotropic conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this paper is to extend the generalized plasticity state parameter‐based model presented in part 1 to reproduce the hydro‐mechanical behavior of unsaturated soils. The proposed model is based on two pairs of stress–strain variables and a suitable hardening law taking into account the bonding—debonding effect of suction and degree of saturation. A generalized state parameter for unsaturated state is proposed to reproduce soil behavior using a single set of material parameters. Generalized plasticity gives a suitable framework to reproduce not only monotonic stress path but also cyclic behavior. The hydraulic hysteresis during a drying—wetting cycle and the void ratio effect on the hydraulic behavior is introduced. Comparison between model simulations and a series of experimental data available, both cohesive and granular, are given to illustrate the accuracy of the enhanced generalized plasticity equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper introduces an unconventional constitutive model for soils, which deals with a unified thermo‐mechanical modelling for unsaturated soils. The relevant temperature and suction effects are studied in light of elasto‐plasticity. A generalized effective stress framework is adopted, which includes a number of intrinsic thermo‐hydro‐mechanical connections, to represent the stress state in the soil. Two coupled constitutive aspects are used to fully describe the non‐isothermal behaviour. The mechanical constitutive part is built on the concepts of bounding surface theory and multi‐mechanism plasticity, whereas water retention characteristics are described using elasto‐plasticity to reproduce the hysteretic response and the effect of temperature and dry density on retention properties. The theoretical formulation is supported by comparisons with experimental results on two compacted clays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
马田田  韦昌富  陈盼  魏厚振  伊盼盼 《岩土力学》2012,33(11):3263-3270
在修正剑桥模型的基础上,提出了一个非饱和土毛细滞回与骨架变形耦合的弹塑性本构模型。该模型考虑了基质吸力与饱和度对屈服应力的影响,可以同时描述非饱和土的弹塑性变形特性与毛细循环滞回效应。根据塑性体变的产生使非饱和土进气值增大的特点,建立了变形对土-水特征曲线影响的数学描述。该模型有效地考虑了饱和度对前期屈服应力的作用,准确地反映了土体在不同土-水状态条件下(脱湿和吸湿过程)强度特性的变化,而且还可以有效地描述水力循环历史对土体变形的影响。通过与试验数据对比,证明了该模型能够模拟非饱和土的主要力学特性。  相似文献   

11.
The paper presents a mechanical model for non‐isothermal behaviour of unsaturated soils. The model is based on an incrementally non‐linear hypoplastic model for saturated clays and can therefore tackle the non‐linear behaviour of overconsolidated soils. A hypoplastic model for non‐isothermal behaviour of saturated soils was developed and combined with the existing hypoplastic model for unsaturated soils based on the effective stress principle. Features of the soil behaviour that are included into the model, and those that are not, are clearly distinguished. The number of model parameters is kept to a minimum, and they all have a clear physical interpretation, to facilitate the model usefulness for practical applications. The step‐by‐step procedure used for the parameter calibration is described. The model is finally evaluated using a comprehensive set of experimental data for the thermo‐mechanical behaviour of an unsaturated compacted silt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Two or more different fluids generally saturate chalk in oil reservoir, and therefore its behaviour can be very complicated. In this paper, a constitutive law is proposed for modelling the mechanical behaviour of a chalk saturated by two non‐miscible fluids, water and oil. The effects of the capillary pressure or suction are taken into account. They are considered as an independent variable, as in the Barcelona's basic model developed for unsaturated soils. On the other hand, internal friction and pore collapse are modelled as independent mechanisms. The determination of the parameters is based on triaxial and oedometer tests. Finally, in order to validate the model, predictions are compared with experimental results of water‐flooding test. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A new constitutive model is developed for the mechanical behaviour of unsaturated soils based on the theory of hypoplasticity and the effective stress principle. The governing constitutive relations are presented and their application is demonstrated using several experimental data from the literature. Attention is given to the stiffening effect of suction on the mechanical response of unsaturated soils and the phenomenon of wetting‐induced collapse. All model parameters have direct physical interpretation, procedures for their quantification from test data are highlighted. Quantitative predictions of the model are presented for wetting, drying and constant suction tests. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
徐筱  赵成刚  蔡国庆 《岩土力学》2018,39(6):2059-2064
基于对非饱和土中孔隙水毛细和吸附作用的区分,得到了一种机制明确的非饱和土抗剪强度模型。首先,假定两种非饱和土的特殊状态,即只存在毛细作用的理想毛细状态和只存在吸附作用的理想吸附状态。分别给出了这两种理想状态的抗剪强度模型,其中毛细作用的影响可表示为考虑气化过程的有效饱和度和吸力的乘积,吸附作用的影响可初步简化表示为表观黏聚力的最大值。其次,利用二元介质模型,认为非饱和土中土-水作用是由这两种理想状态的不同权重组合而成。通过气化概率分布函数,表示了实际非饱和土中两种理想状态的参与比重,建立了适用于较广吸力变化范围的非饱和土抗剪强度模型。最后,通过与试验结果及当前流行的模型拟合结果的对比,验证了所建立的模型的合理性。研究表明,在考虑吸力对非饱和土力学性质的影响时,应该区分吸力的不同作用。  相似文献   

15.
A double structure generalized plasticity model for expansive materials   总被引:1,自引:0,他引:1  
The constitutive model presented in this work is built on a conceptual approach for unsaturated expansive soils in which the fundamental characteristic is the explicit consideration of two pore levels. The distinction between the macro‐ and microstructure provides the opportunity to take into account the dominant phenomena that affect the behaviour of each structural level and the main interactions between them. The microstructure is associated with the active clay minerals, while the macrostructure accounts for the larger‐scale structure of the material. The model has been formulated considering concepts of classical and generalized plasticity theories. The generalized stress–strain rate equations are derived within a framework of multidissipative materials, which provides a consistent and formal approach when there are several sources of energy dissipation. The model is formulated in the space of stresses, suction and temperature; and has been implemented in a finite element code. The approach has been applied to explaining and reproducing the behaviour of expansive soils in a variety of problems for which experimental data are available. Three application cases are presented in this paper. Of particular interest is the modelling of an accidental overheating, that took place in a large‐scale heating test. This test allows the capabilities of the model to be checked when a complex thermo‐hydro‐mechanical (THM) path is followed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
吸力历史对非饱和土力学性质的影响   总被引:1,自引:0,他引:1  
张俊然  许强  孙德安 《岩土力学》2013,34(10):2810-2814
现在被广泛公认的由Fredlund提出的非饱和土力学的双参数理论,即净应力和吸力为非饱和土的应力状态变量,不能直接考虑吸力历史及其饱和度对非饱和土的应力-应变关系和强度的影响。非饱和土三轴试验结果表明,即使净应力和吸力相同的条件下,经过干-湿循环试样与未经过干-湿循环试样的应力比-应变关系和强度是不相同的。在其他条件相同时,经历过干-湿循环的试样比未经过干-湿循环试样的应力比-应变关系要高、强度大和体变小。经过干-湿循环试样的饱和度低而强度高,主要是由于经过先期较高的吸力,相当于受过较大的前期有效压力,使试样成为超固结土。更多不同吸力历史的对比试验有待于进一步研究,以便为非饱和土的水力-力学特性耦合弹塑性本构模型定量地表示上述非饱和土的性质提供基础性试验数据。  相似文献   

17.
孙德安 《岩土力学》2009,30(Z2):13-16
现在被广泛公认的由Fredlund提出的非饱和土力学的双参数理论,即净应力和吸力为非饱和土的应力状态量,不能直接考虑饱和度或含水率对非饱和土的应力-应变关系和强度的影响。在非饱和土三轴试验结果表明,即使在净应力和吸力路径相同的条件下,具有不同饱和度试样的应力-应变关系和强度也是不同的。其他条件相同时,试样饱和度越高,其应力比-应变关系曲线越高,强度越大。最新的水力-力学特性耦合的弹塑性本构模型可以定量地表示上述非饱和土的性质  相似文献   

18.
The behavior of a partially saturated soil during surface‐water infiltration is analyzed by means of an elasto‐plastic constitutive model formulated in terms of effective stress and extended to unsaturated conditions. The model is calibrated considering laboratory‐scale experimental results under suction‐controlled conditions. The wetting process in two collapsing soils, initially loaded at in situ stresses, is simulated by imposing two different boundary conditions: surface ponding and water flow. The stress paths resulting from the imbibition process are analyzed at different points inside the layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The two stress-state variable approach has been widely used in interpreting unsaturated soil behaviour. However this approach cannot take into account the effect of degree of saturation or water contents on the stress–strain behaviour and strength of unsaturated soils. The triaxial test results presented in this paper show that even if the same path of net stress and suction is followed, the stress–strain relation and strength are different due to different degrees of saturation. When other conditions are the same, the higher the degree of saturation for the soil sample is, the higher the stress ratio corresponding to a given axial strain will be. This effect can be modeled by using an elasto-plastic constitutive model coupling hydraulic and mechanical behaviour of unsaturated soils. Comparisons between the predicted and measured results are presented, which demonstrate that the model can quantitatively simulate the influence of the degree of saturation on stress–strain behaviour and strength of unsaturated soils.  相似文献   

20.
有效应力参数的合理确定是非饱和土有效应力研究的重要内容。然而,现有的有效应力参数未能较好地考虑孔隙水的微观赋存形态对有效应力的影响。为此,分析了孔隙水的微观赋存形态,明确了孔隙水可分为收缩膜、吸附水和毛细水,建立了非饱和粉土的扩展三相孔隙介质模型,即孔隙气、毛细水和广义土骨架。基于该模型,采用分相平衡分析法,推导了非饱...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号