首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on relevant experimental data of a petroleum cement paste under mechanical loading and chemical leaching, an elastic‐plastic model is first proposed by taking into account plastic shearing and pore collapse. The degradation of mechanical properties induced by the chemical leaching is characterized by a chemical damage variable which is defined as the increase of porosity. Both elastic and plastic properties of the cement paste are affected by the chemical damage. The proposed model is calibrated from and applied to describe mechanical responses in triaxial compression tests respectively on sound and fully leached samples. In the second part, a phenomenological chemical model is defined to establish the relationship between porosity change and calcium dissolution process. The dissolution kinetics is governed by a diffusion law taking into account the variation of diffusion coefficient with calcium concentration. The chemical model is coupled with the mechanical model, and both are applied to describe mechanical response of cement paste samples subjected to progressive chemical leaching and compressive stresses. Comparisons between experimental data and numerical results are presented.  相似文献   

2.
3.
This paper presents an elasto‐plastic model for non‐linear analyses of cement‐treated sand. Various laboratory tests were systematically carried out to investigate the pre‐peak and post‐peak behaviours of a cement‐treated sand. On the basis of these experimental results, the new model was built within the framework of a relatively simple elasto‐plastic theory. Two failure criteria are employed to express tensile and shear failure characteristics observed in the experimental results of the cement‐treated sand. The proposed model can describe strain‐hardening and strain‐softening responses under both failure modes. In the strain‐softening rules, the smeared crack concept is used, and a characteristic length is considered to avoid the issue of mesh‐size dependency. Since the failure criterion and strain‐hardening/softening rules are based on the experimental evidences, the model is relatively easy to understand and the parameters used in the model have clear physical meaning. The proposed model was applied to simulate the behaviour of cement‐treated sand in various laboratory tests, allowing for a reasonable comprehensive evaluation. It was demonstrated that the proposed model is suitable for describing both the tensile and shear failure behaviours of cement‐treated sand. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Strain gradient implies an important characteristic in localized damage deformation, which can be observed in the softening state of brittle materials, and strain gradients constitute the basic behaviours of localization failure area of the materials. The most important point in strain gradient is its damaging function including an internal length scale, which can be used to express the scale effects of mechanical responses of brittle rock mass. By extending the strain gradient theory and introducing an intrinsic material length scale into the constitutive law, the authors develop an isotropic damage model as well as a micro‐crack‐based anisotropic damage model for rock‐like materials in this paper. The proposed models were used to simulate the damage localization under uniaxial tension and plain strain compression, respectively. The simulated results well illustrated the potential of these models in dealing with the well‐known mesh‐sensitivity problem in FEM. In the computation, elements with C1 continuity have been implemented to incorporate the proposed models for failure localization. When regular rectangle elements are encountered, the coupling between finite difference method (FDM) and conventional finite element method (FEM) is used to avoid large modification to the existing FEM code, and to obtain relatively higher efficiency and reasonably good accuracy. Application of the anisotropic model to the 3D‐non‐linear FEM analysis of Ertan arch dam has been conducted and the results of its numerical simulation coincide well with those from the failure behaviours obtained by Ertan geophysical model test. In this paper, new applications of gradient theories and models for a feasible approach to simulate localized damage in brittle materials are presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a numerical model for the elasto‐plastic electro‐osmosis consolidation of unsaturated clays experiencing large strains, by considering electro‐osmosis and hydro‐mechanical flows in a deformable multiphase porous medium. The coupled governing equations involving the pore water flow, pore gas flow, electric flow and mechanical deformation in unsaturated clays are derived within the framework of averaging theory and solved numerically using finite elements. The displacements of the solid phase, the pressure of the water phase, the pressure of the gas phase and the electric potential are taken as the primary unknowns in the proposed model. The nonlinear variation of transport parameters during electro‐osmosis consolidation are incorporated into the model using empirical expressions that strongly depend on the degree of water saturation, whereas the Barcelona Basic Model is employed to simulate the elasto‐plastic mechanical behaviour of unsaturated clays. The accuracy of the proposed model is evaluated by validating it against two well‐known numerical examples, involving electro‐osmosis and unsaturated soil behaviour respectively. Two further examples are then investigated to study the capability of the computational algorithm in modelling multiphase flow in electro‐osmosis consolidation. Finally, the effects of gas generation at the anode, the deformation characteristics, the degree of saturation and the time dependent evolution of the excess pore pressure are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Wheeler, Sharma and Buisson proposed an elasto‐plastic constitutive model for unsaturated soils that couples the mechanical and water retention behaviours. The model was formulated for isotropic stress states and adopts the mean Bishop's stress and modified suction as stress state variables. This paper deals with the extension of this constitutive model to general three‐dimensional stress conditions, proposing the generalized stress–strain relationships required for the numerical integration of the constitutive model. A characteristic of the original model is the consideration of a number of elasto‐plastic mechanisms to describe the complex behaviour of unsaturated soils. This work presents the three‐dimensional formulation of these coupled irreversible mechanisms in a generalized way including anisotropic loading. The paper also compares the results from the model with published experiments performed under different loading conditions. The response of the model is very satisfactory in terms of both mechanical and water retention behaviours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

8.
This paper presents the experimental study conducted on a clayey soil originating from the region of Béja, north-west of Tunisia. The evaporation, shrinkage and permeability behaviours were studied. The Soil Water Retention Curve (SWRC) was determined from the slurry state to dry state, under the desiccation path (called initial drying curve). The Crack Intensity Factor (CIF), settlement and void ratio were also studied to characterise the shrinkage phenomenon during desiccation. Moisture content (ω), saturation degree (Sr) and evaporation rate (Re) evolutions during desiccation path were also presented. This type of slurry clay presents three stages during the desiccation process (pendular, funicular and capillary regimes). During desiccation process, the evaporation rate presents a linear relationship as a saturation degree function. Furthermore, the evaporation rate versus suction presents two phases: quasi-saturated and unsaturated states. This paper introduces a study of the hygroscopic and mechanical parameters naturally modified during a desiccation process and proposes some analytical models to describe clay behaviour. Using these parameters, we can determine the intrinsic permeability during the desiccation process.  相似文献   

9.
In order to understand the mechanical behaviours of the surrounding rocks in the underground caverns of the Wudongde hydropower plant, triaxial tests are performed on a type of dolomite. It is revealed that damage induced by crack development is the main factor controlling the nonlinear plastic deformation and failure behaviour of the dolomite in both pre- and post-peak regimes. Based on this understanding, a coupled elastoplastic damage model is developed for capturing the dolomite’s mechanical behaviours. In the model, the effects of plasticity and damage on rocks is described by introducing plastic hardening and damage softening commonly in the plastic yield surface. Which are both derived from a suitable Helmholtz free energy function. The model is used to simulate the triaxial tests. Comparisons between test results and the numerical modelling show that the developed model is capable of describing the macro mechanical behaviours of the Wudongde dolomite.  相似文献   

10.
11.
12.
A unified elastoplastic model for describing the stress–strain behavior of partially saturated collapsible rocks is proposed. The elastic–plastic response due to loading and unloading is captured using bounding surface plasticity. The coupling effect of hydraulic and mechanical responses is addressed by applying the effective stress concept. Special attention is paid to the rock–fluid characteristic curve (RFCC), effective stress parameter, and suction hardening. A wide range of saturation degree is considered. The characteristics of mechanical behavior in partially saturated collapsible rocks are captured for all cases considered.  相似文献   

13.
孙德安 《岩土力学》2009,30(Z2):13-16
现在被广泛公认的由Fredlund提出的非饱和土力学的双参数理论,即净应力和吸力为非饱和土的应力状态量,不能直接考虑饱和度或含水率对非饱和土的应力-应变关系和强度的影响。在非饱和土三轴试验结果表明,即使在净应力和吸力路径相同的条件下,具有不同饱和度试样的应力-应变关系和强度也是不同的。其他条件相同时,试样饱和度越高,其应力比-应变关系曲线越高,强度越大。最新的水力-力学特性耦合的弹塑性本构模型可以定量地表示上述非饱和土的性质  相似文献   

14.
Mechanical properties of methane hydrate‐bearing soils are complex. Their behavior undergoes a significant change when hydrates dissociate and become methane gas. On the other hand, methane hydrates are ice‐like compounds and, depending on the hydrate accumulation habits and the degree of hydrate saturation, may cement soil particles into stronger and stiffer soils. A new constitutive model is proposed that is capable of capturing essential characteristics of hydrate‐bearing soils. The core of the model includes the spatial mobilized plane concept; a transformed stress, tij; the critical state; and the subloading framework. The proposed model gives soil responses due to stress changes or hydrate saturation changes or both. The performance of the model has been found satisfactory, over a range of hydrate saturation and confining pressures, using triaxial test data from laboratory‐synthesized samples and from field samples extracted from Nankai Trough, Japan. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
岩石弹脆性分维损伤本构模型   总被引:3,自引:0,他引:3       下载免费PDF全文
赵永红 《地质科学》1997,32(4):487-494
本文定义岩石构元中破裂面的分维值为各向同性损伤变量,而各个方向上裂纹面的累加量定义为各向异性损伤变量,并根据裂纹发育特征提出了损伤变量演化方程,从而建立起岩石脆性变形破坏过程的分维损伤本构模型。最后,利用该模型对大理岩单轴压缩应力应变曲线进行了模拟,结果说明本文提出的模型是较为合理的。  相似文献   

16.
A discrete plastic–damage model is developed for cohesive‐frictional geomaterials subjected to compression‐dominated stresses. Macroscopic plastic strains of material are physically generated by frictional sliding along weakness planes. The evolution of damage is related to the evolution of weakness planes physically in connection with the propagation of microcracks. A discrete approach is used to account for anisotropic plastic flow and damage evolution, by introducing two stress invariants and one plastic hardening variable for each family of sliding weakness planes. Plastic flow in each family is coupled with damage evolution. The proposed model is applied to typical geomaterials and comparisons between numerical predictions and experimental data are presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
After placement of cemented tailings backfill (CTB), which is a mixture of tailings (man‐made soil), water, and binder, into underground mined‐out voids (stopes), the hydration reaction of the binder converts the capillary water into chemically bound water, which results in the reduction of the water content in the pores of the CTB, thereby causing a reduction in the pore‐water pressure in the CTB (self‐desiccation). Self‐desiccation has a significant impact on the pore‐water pressure and effective stress development in CTB and paramount and practical importance for the stability assessment and design of CTB structures and barricades. However, self‐desiccation in CTB structures is complex because it is a function of the multiphysics or coupled (i.e., thermal, hydraulic, mechanical, and chemical) processes that occur in CTB. To understand the self‐desiccation behavior of CTB, an integrated multiphysics model of self‐desiccation is developed in this study, which fully considers the coupled thermal, hydraulic, mechanical, and chemical processes and the consolidation process in CTB. All model coefficients are determined in measurable parameters. Moreover, the predictive ability of the model is verified with extensive case studies. A series of engineering issues are examined with the validated model to investigate the self‐desiccation process in CTB structures with respect to the changes in the mixture recipe, backfilling, and the surrounding rock and curing conditions. The obtained results provide in‐depth insight into the self‐desiccation behavior of CTB structures. The developed multiphysics model is therefore a potential tool for assessing and predicting self‐desiccation in CTB structures.  相似文献   

18.
The study of drying process in soils has received an increased attention in the last few years. This is very complex phenomenon that generally leads to the formation and propagation of desiccation cracks in the soil mass. In recent engineering applications, high aspect ratio elements have proved to be well suited to tackle this type of problem using finite elements. However, the modeling of interfaces between materials with orthotropic properties that generally exist in this type of problem using standard (isotropic) constitutive model is very complex and challenging in terms of the mesh generation, leading to very fine meshes that are intensive CPU demanding. A novel orthotropic interface mechanical model based on damage mechanics and capable of dealing with interfaces between materials in which the strength depends on the direction of analysis is proposed in this paper. The complete mathematical formulation is presented together with the algorithm suggested for its numerical implementation. Some simple yet challenging synthetic benchmarks are analyzed to explore the model capabilities. Laboratory tests using different textures at the contact surface between materials were conducted to evaluate the strengths of the interface in different directions. These experiments were then used to validate the proposed model. Finally, the approach is applied to simulate an actual desiccation test involving an orthotropic contact surface. In all the application cases the performance of the model was very satisfactory.  相似文献   

19.
In this paper, we propose an anisotropic plastic damage model for semi-brittle geomaterials based on a discrete thermodynamic approach. The macroscopic plastic deformation is generated by frictional sliding of weakness planes. The evolution of damage is related to growth of such weakness planes. The local frictional sliding in each family of weakness planes is described by a non-associated plastic model taking into account material softening and volumetric dilatancy. The damage evolution is coupled with plastic deformation and modelled by an isotropic damage criterion. The proposed model is applied to modelling mechanical responses of typical sandstone under different loading paths. There is good agreement between numerical predictions and experimental data. Further, the anisotropic distributions of plastic deformation and induced damage are analysed and discussed.  相似文献   

20.
The Barcelona basic model cannot predict the mechanical behaviour of unsaturated expansive soils, whereas the Barcelona expansive model (BExM) can only predict the stress–strain behaviour of unsaturated expansive soils without the water‐retention behaviour being incorporated. Moreover, the micro‐parameters and the coupling function between micro‐structural and macro‐structural strains in the BExM are difficult to determine. Experimental data show that the compression curves for non‐expansive soils under constant suctions are shifted towards higher void ratios with increasing suction, whereas the opposite is true for expansive soils. According to the observed water‐retention behaviour of unsaturated expansive soils, the air‐entry value increases with density, and the relationship between the degree of saturation and void ratio is linear at constant suction. According to the above observation, an elastoplastic constitutive model is developed for predicting the hydraulic and mechanical behaviour of unsaturated expansive soils, based on the existing hydro‐mechanical model for non‐expansive unsaturated soil. The model takes into consideration the effect of degree of saturation on the mechanical behaviour and that of void ratio on the water‐retention behaviour. The concept of equivalent void ratio curve is introduced to distinguish the plastic potential curve from the yield curve. The model predictions are compared with the test results of an unsaturated expansive soil, including swelling tests under constant net stress, isotropic compression tests and triaxial shear tests under constant suction. The comparison indicates that the model offers great potential for quantitatively predicting the hydraulic and mechanical behaviour of unsaturated expansive soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号