首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although Zn–Pb deposits are one of the most important Cd reservoirs in the earth, few studies have focused on the Cd isotopic fractionation in Zn–Pb hydrothermal systems. This study investigates the causes and consequences of cadmium and sulfur isotope fractionation in a large hydrothermal system at the Tianbaoshan Zn–Pb–Cd deposit from the Sichuan–Yunnan–Guizhou (SYG) metallogenic province, SW China. Moderate variations in Cd and S isotope compositions have been measured in sphalerite cover a distance of about 78 m. Sphalerite has δ114/110Cd values ranging from 0.01 to 0.57‰, and sulfides (sphalerite, galena and chalcopyrite) have δ34SCDT values ranging from 0.2 to 5.0‰. Although δ34SCDT and δ114/110Cd values in sphalerites have no regular spatial variations, the δ34SCDT values in galena and calculated ore-forming fluid temperatures decreased from 2.1 to 0.2‰ and from about 290 to 130 °C, respectively, from the bottom to the top of the deposit. Heavy Cd isotopes are enriched in early precipitated sphalerite in contrast to previous studies. We suggest that Cd isotopic compositions in ore-forming fluids are heterogeneous, which result in heavy Cd isotope enrichment in early precipitated sphalerite. In comparison with other Zn–Pb deposits in the SYG area, the Tianbaoshan deposit has moderate Cd contents and small isotope fractionation, suggesting differences in origin to other Zn–Pb deposits in the SYG province.In the Tianbaoshan deposit, the calculated δ34S∑S-fluids value is 4.2‰, which is not only higher than the mantle-derived magmatic sulfur (0 ± 3‰), but also quite lower than those of Ediacaran marine sulfates (about 30 to 35‰). Thus, we suggest that reduced sulfur of ore-forming fluids in the deposit was mainly derived from the leaching of the basement, which contains large amount of volcanic or intrusive rocks. Based upon a combination of Cd and S isotopic systems, the Tianbaoshan deposit has different geochemical characteristics from typical Zn–Pb deposits (e.g., the Huize deposit) in SYG area, indicating the unique origin of this deposit.  相似文献   

2.
Several generations of Paleozoic granitic rocks are studied with Sm–Nd isotopic methods in the northwestern part of the Aktau–Dzhungar microcontinent of Central Kazakhstan (Atasu–Mointy divide). The initial Nd isotopic composition of the granitic rocks varies in a relatively narrow range from–0.1 to–3.5ε; the Nd model ages are also similar (1.11–1.46 Ga). These results indicate that the crustal source of all the Paleozoic granitic rocks of the region had similar composition and, probably, age. It is shown that the tNd(DM) values of the Paleozoic granites reflect different proportions between ancient and juvenile material in the crustal source.  相似文献   

3.
Whole-rock geochemical and Sr, Nd and Pb isotope data are presented for the Harrat Al-Madinah volcanic field, in the north western part of the Arabian plate, aiming to understand their origin and the composition of their mantle source. This area is an active volcanic field characterized by the occurrence of two historic eruptions approximately in 641 and 1256 A.D. Field investigation of the main volcanic landforms indicates dominantly monogenetic strombolian eruptions, in addition to local phreatomagmatic eruption style. The lavas consist mainly of alkali olivine basalt, olivine transitional basalt, and hawaiite with ocean island basalt (OIB)-like characteristics. Evolved rocks, represented by mugearites, benmoreites, and trachytes, occur mainly as domes, tuff cones and occasionally as lava flows. Chemical variations in the evolved rocks indicated their evolution by low pressure crystal fractionation of olivine, plagioclase, clinopyroxene, and Fe–Ti oxides from the relatively primitive basalts. The isotopic compositions of 143Nd/144Nd (0.512954–0.512995), 87Sr/86Sr (0.702899 to–0.702977) and Pb (206Pb/204Pb = 18.5515–18.7446, 207Pb/204Pb = 15.5120–15.5222, 208Pb/204Pb = 38.1347–38.4468), show restricted variations suggesting only minor crustal contamination. They defined an array consistent with mixing of two geochemically distinct components of depleted MORB-mantle (DMM) and high 238U/204Pb ratio (HIMU). The variations in Tb/Yb, La/Yb and Sm/Yb ratios in the relatively primitive basalts (MgO > 6 wt.%) indicated garnet peridotite source. However, the positive Nb, Sr, Ba and Ti anomalies in the primitive mantle-normalized incompatible element patterns and the significant variation between Zr/Nb vs. Ce/Y and La/Yb vs. Yb suggest contribution of an amphibole-bearing spinel lherzolite source. Moreover, the negative correlations between SiO2 vs. 87Sr/86Sr and Th vs. 143Nd/144Nd are interpreted as an indication of mixing melts derived from two end-members; one is garnet bearing asthenospheric source with OIB characteristic and the other is amphibole-bearing spinel lherzolite. The Harrat Al-Madinah volcanic field occurs near the Red Sea Rift System and its origin reflects a strong lithospheric control on the loci of partial melting. The dominantly NNW alignment patterns of the volcanoes, which is similar to the regional Red Sea trend, may suggest that the magmas were produced by decompression partial melting triggered by lithospheric extension related to the Red Rift.  相似文献   

4.
Base metal–Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu–Pb–Zn–Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E–W- and NE–SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07–18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE–SW-oriented faults into a chalcocite-dominated Cu–Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66–23.65; 207Pb/204Pb = 15.72–16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U–Th–Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu–Pb–Zn–Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb–206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu–Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.  相似文献   

5.
The Tongjing Cu–Au deposit is a medium-sized deposit within the Ningwu volcanic basin, east China, and is hosted by Cretaceous volcanic rocks of the Dawangshan and Niangniangshan Formations. The veined and lenticular Cu–Au orebodies are spatially and temporally related to the volcanic and subvolcanic rocks of the Niangniangshan Formation in the ore district. The wall-rock alteration is dominated by silicification, siderite alteration, carbonation, sericitization, chloritization, and kaolinization. On the basis of field evidence and petrographic observations, two stages of mineralization are recognized: (1) a siderite–quartz–sulfide stage (Stage 1) associated with the formation of chalcopyrite and pyrite in a quartz and siderite gangue; and (2) a quartz–bornite stage (Stage 2) cutting the Stage 1 phases. Stage 1 is the main mineralization stage. Quartz that formed in Stage 1 has δ18OH2O values of − 4.3‰ to 3.5‰ with δD values of fluid inclusion waters of − 97.1‰ to − 49.9‰, indicating that the ore-forming fluids were derived from early magmatic fluids and may have experienced oxygen isotopic exchange with meteoric water during Stage 1 mineralization.LA–MC–ICP–MS zircon U–Pb dating of the mineralization-related nosean-bearing phonolite and nosean-bearing phonolitic brecciated tuff at Tongjing yields ages of 129.8 ± 0.5 Ma and 128.9 ± 1.1 Ma, respectively. These results are interpreted as the crystallization age of the volcanic rocks of the Niangniangshan Formation. A hydrothermal sericite sample associated with Cu–Au mineralization at Tongjing yields a plateau 40Ar–39Ar age of 131.3 ± 1.3 Ma. These results confirm a genetic link between the volcanism and associated Cu–Au mineralization. The Tongjing Cu–Au deposit in the Ningwu basin is genetically and possibly tectonically similar to alkaline intrusion-related gold deposits elsewhere in the world.  相似文献   

6.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   

7.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

8.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

9.
The Tianqiao Pb–Zn deposit in the western Yangtze Block, southwest China, is part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province. Ore bodies are hosted in Devonian and Carboniferous carbonate rocks, structurally controlled by a thrust fault and anticline, and carried about 0.38 million tons Pb and Zn metals grading > 15% Pb + Zn. Both massive and disseminated Pb–Zn ores occur either as veinlets or disseminations in dolomitic rocks. They are composed of ore minerals, pyrite, sphalerite and galena, and gangue minerals, calcite and dolomite. δ34S values of sulfide minerals range from + 8.4 to + 14.4‰ and display a decreasing trend from pyrite, sphalerite to galena (δ34Spyrite > δ34Ssphalerite > δ34Sgalena). We interpret that reduced sulfur derived from sedimentary sulfate (gypsum and barite) of the host Devonian to Carboniferous carbonate rocks by thermal–chemical sulfate reduction (TSR). δ13CPDB and δ18OSMOW values of hydrothermal calcite range from –5.3 to –3.4‰ and + 14.9 to + 19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid was a mixture origin of mantle, marine carbonate rocks and sedimentary organic matter. Sulfide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.378 to 18.601, 207Pb/204Pb = 15.519 to 15.811 and 208Pb/204Pb = 38.666 to 39.571) that are plotted in the upper crust Pb evolution curve and overlap with that of Devonian to Carboniferous carbonate rocks and Proterozoic basement rocks in the SYG province. Pb isotope compositions suggest derivation of Pb metal from mixed sources. Sulfide minerals have 87Sr/86Sr ratios ranging from 0.7125 to 0.7167, higher than Sinian to Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than basement rocks. Again, Sr isotope compositions are supportive of a mixture origin of Sr. They have an Rb–Sr isotopic age of 191.9 ± 6.9Ma, possibly reflecting the timing of Pb–Zn mineralization. C–O–S–Pb–Sr isotope compositions of the Tianqiao Pb–Zn deposit indicate a mixed origin of ore-forming fluids, which have Pb–Sr isotope homogenized before the mineralization. The Permian flood basalts acted as an impermeable layer for the Pb–Zn mineralization hosted in the Devonian–Carboniferous carbonate rocks.  相似文献   

10.
The Lengshuikeng ore district in east-central China has an ore reserve of ~43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb?+?Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ~100–400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite–chalcopyrite–sphalerite, middle-stage acanthite–native silver–galena–sphalerite, and late-stage pyrite–quartz–calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from ?3.8 to +6.9‰ with an average of +2.0‰. The C–O isotope values of siderite, calcite, and dolomite range from ?7.2 to ?1.5‰ with an average of ?4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA–ICP–MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3?±?0.8 Ma considered as the emplacement age of the porphyry. Rb–Sr dating of sphalerite from the main ore stage yielded an age of 126.9?±?7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag–Pb–Zn deposit.  相似文献   

11.
The Honghuagou Au deposit is located in the Chifeng-Chaoyang region within the northern margin of the North China Craton. The auriferous quartz veins are mainly hosted in the mafic gneiss and migmatite of the Neoarchean Xiaotazigou Formation along NNW- and NE-striking faults, with pyrite as the predominant ore mineral. The gold mineralization process can be divided into two stages, involving stage I quartz-pyrite and stage II quartz-calcite-polymetallic sulfide. Three types of fluid inclusions (FIs) have been identified in the Honghuagou deposit, namely, carbonic inclusions, aqueous‑carbonic inclusions, and aqueous inclusions. Quartz of stage I contains all types of FIs, whereas only aqueous inclusions are evident in stage II veins. The FIs of stages I and II yield homogenization temperatures of 275–340 °C and 240–290 °C with salinities of 3.4–10.7 wt% and 1.4–9.7 wt% NaCl eqv., respectively. The ore-forming fluids are characterized by medium temperature and low salinity, belonging to the H2O–NaCl–CO2 system. The δ18OH2O values of the ore fluids are between 2.1‰ and 5.9‰, within the range of enriched mantle-derived fluids in the North China Craton. The carbon isotope compositions of calcite (δ13CPDB = −4.4‰ to −4‰) are also similar to mantle carbon. He-Ar isotope data (3He/4He = 0.38–0.44 Ra; 40Ar/36Ar = 330–477) of fluid inclusions in pyrite indicate a mixed crustal and mantle source for the ore-forming fluids. Whereas, S-Pb isotope compositions of sulfides reveal that ore metals are principally derived from crustal rocks. On the basis of available geological and geochemical evidence, we suggest that the Honghuagou deposit is an orogenic gold deposit.  相似文献   

12.
The large-scale Bayanbaolege Ag polymetallic deposit is situated in the Tuquan–Linxi Fe-Sn-Cu-Pb-Zn-Ag metallogenic sub-belt in eastern slopes of the southern Great Xing’an Range, NE China. The sulfide-quartz vein-type orebodies in the deposit are hosted primarily in the Early Cretaceous granodiorite porphyry and Late Permian strata. Three primary paragenetic stages of veining have been identified: (I) arsenopyrite- pyrite-quartz stage, (II) pyrite-sphalerite-quartz stage, and (III) galena-silver minerals (pyrargyrite, argentite, and pearceite)-calcite stage. The Rb–Sr dating of sulfides yielded an isochron age of 129.9 ± 2.9 Ma (MSWD = 2.1) for the sphalerite, which constrains the mineralization age to the Early Cretaceous. Rb and Sr concentrations in the sulfides ranged from 0.0940 to 1.0294 ppm and 0.0950–3.3818 ppm, respectively. The initial 87Sr/86Sr value of the sphalerite was 0.70852 ± 0.00018, indicating that the mineralized materials were derived from the mixed crust-mantle source area. S isotope analysis showed that the δ34S values of the sulfide samples varied in a narrow range, from −1.5‰ to +1.3‰ (mean −0.65‰), indicating a magmatic S source. Pb isotopic ratios of the sulfides (206Pb/204Pb = 18.306–18.416, 207Pb/204Pb = 15.524–15.605, 208Pb/204Pb = 38.095–38.479) and the granodiorite porphyry (206Pb/204Pb = 18.341–18.933, 207Pb/204Pb = 15.539–15.600, 208Pb/204Pb = 38.134–38.944) reflect that the ore-forming materials originated from contemporaneous magma with Early Cretaceous granodiorite porphyry. This study of the Bayanbaolege deposit and other hydrothermal deposits in the area provides compelling evidence that the widespread Mesozoic magmatism and mineralization in the southern Great Xing’an Range occurred in an intracontinental extensional tectonic setting, which was associated with the westward subduction of the paleo-Pacific plate.  相似文献   

13.
《International Geology Review》2012,54(10):1261-1279
The eastern Qinling belt is characterized by widespread Mesozoic post-orogenic magmatism and abundant Mo–(Au–Ag) polymetallic mineralization. Most Mo deposits in this belt are genetically related to Mesozoic granitoids. The tectonic context of this close spatial and temporal relationship is still debated. This study reports U–Pb ages and Hf isotopic composition of zircons, major and trace element and Sr–Nd–Pb isotopic composition of the Donggou granite porphyry, host rock to one of the important Mesozoic Mo deposits in this orogen. Based on geochemical results, the Donggou granite porphyry is a silica-supersaturated, high-K metaluminous A-type granite showing enrichment in light REEs, depletion in middle REEs and significant negative Eu, Ba, Nb, Sr, P, and Ti anomalies. Negative initial ?Nd values of??17.0 to??13.2 for whole-rock and negative initial ?Hf values of??19.9 to??7.8 for zircon suggest that the magma was derived from a mixture of Archaean/Proterozoic crustal rocks and mantle-derived or newly added crust. Its Pb isotopic composition is similar to the lower crust of the North China block, but different from superjacent country rocks (Xiong'er and Taihua Groups). Zircon U–Pb dating yields a late Mesozoic emplacement age of 118–117 Ma, identical with the third episode of Mo mineralization in the eastern Qinling–Dabie belt. We postulate that the Donggou Mo-related porphyry granite formed by reworking of North China lower crust with significant input of juvenile material. The magmas formed in an extensional tectonic setting, induced by lithospheric thinning and asthenospheric upwelling beneath eastern China during Cretaceous time.  相似文献   

14.
The Saga Plain is near Beppu–Shimabara graben, a region of potential active volcanism. In the graben, mantle He, which has a high 3He/4He ratio of 1.1 × 10−5, escapes easily from the underlying subduction zone. In groundwater of the Saga Plain, except in the Shiroishi district, this ratio gradually increased as the dissolved He content increased, to a maximum of 5 × 10−6. In central Shiroishi, however, the ratio reached a minimum of 8.7 × 10−7 with increasing dissolved He content, suggesting that groundwater in central Shiroishi has selectively accumulated radiogenic He, which has a very low ratio of 1 × 10−8, rather than reflecting the regional He, which is rich in mantle He. This can be explained if groundwater in Shiroishi has become mixed with fossil pore water drawn from impermeable marine clay aquitard layers. The withdrawal of pore water has also caused severe land subsidence in central Shiroishi.  相似文献   

15.
According to isotopic analysis of rocks of the Reft gabbro–diorite–tonalite complex (Middle Urals), gabbro and related diorite and dikes and vein-shaped bodies of plagiogranitoids, crosscutting gabbro, are similar to the depleted mantle substance in εNd(T) = 8.6–9.7 and εHf(T) = 15.9–17.9. Their model Hf ages are correlated with the time of crystallization. Here, the tonalites and quartz diorites constituting most of the Reft massif are characterized by lower values: εNd(T) = 3.7–6.0, εHf(T) = 11.1–12.7, and T DM values significantly exceeding the age datings. This is evidence that Neoproterozoic crustal rocks were a source of parental magma for these rocks. The primary 87Sr/86Sr ratio in rocks of both groups is highly variable (0.70348–0.70495). The data obtained allow us to reach the conclusion that the Reft gabbro–diorite–tonalite complex was formed as a result of nearly synchronous processes occurring in the crust and the mantle within a limited area.  相似文献   

16.
Based on geological data and the geochemical and isotopic (Sr, Nd) parameters of the Devonian volcanic associations of the Minusa basin, the main regularities of volcanism development are considered, the composition of magmatic sources is studied, and the geodynamic mechanisms of their involvement in rifting are reconstructed. The early stage of formation of the Minusa basin was characterized by intense volcanism, which resulted in differentiated and, more seldom, bimodal volcanic complexes composed of pyroclastic rocks and dolerite sills. At the late stage, only terrigenous deposits accumulated in the basin. It has been established that the basites are similar in composition and are intermediate in geochemical characteristics between intraplate rocks (OIB) and continent-marginal ones (IAB). The basites, like OIB, have high contents of all lithophile elements, which is typical of enriched mantle sources, and, like IAB, show negative anomalies of Nb, Ta, Ti, and, to a smaller extent, Rb, Th, Zr, and Hf, selective enrichment in Pb and Ba (and, sometimes, Sr), and a weak REE differentiation (7 < (La/Yb)N < 17). In contrast to the basins in other segments of the Devonian Altai–Sayan rift area, the igneous associations in the Minusa basin are characterized by a worse expressed geochemical inhomogeneity of rocks and lack of high-Ti (> 2 wt.% TiO2) basites. The Sr and Nd isotope compositions of the Minusa basites deviate from the mantle rock series toward the compositions with high radiogenic-strontium and low REE contents.This points to the melting of a mantle substratum (PREMA-type) and carbonate-rich sedimentary rocks, which were probably assimilated by basaltic magma. The correlations between the contents of trace incompatible elements in rocks with SiO2 = 53–77 wt.% testify to the assimilation of crustal substrata by parental basaltic melts and the subsequent differentiation of contaminated magmas (AFC model). We propose a model for the formation of primary melts with the simultaneous participation of magmatic sources of two types: plume and fluid-saturated suprasubductional, localized beneath the active continental margin.  相似文献   

17.
The Vazante Group show varied U–Pb provenance patterns along the basin. Zircon ages range from 936 to 3409 Ma, but Paleo- and Mesoproterozoic terrains constitute the main sources of the original sediments. The youngest population (~ 930 Ma) establishes the maximum depositional age of the group. Sm–Nd TDM data show the predominance of Paleoproterozoic ages (1.90–2.08 Ga) and also indicate some input from younger sources in rocks of the Lapa Formation (1.67 to 2.0 Ga) in the upper part of the group, whereas rocks of the Serra do Garrote Formation present the oldest model ages (2.03 to 2.76 Ga). Hf isotopic compositions of the detrital zircons indicate that they were derived mainly from recycled Paleoproterozoic crust with a minor Mesoproteroic juvenile component. Terranes within the São Francisco Craton represent the main sources of detrital sediments of this group and reinforce the interpretation that it may be a passive margin sequence developed along the western margin of the original continent. However, the origin of Mesoproterozoic grains remains uncertain. Slightly younger Sm–Nd model ages in the Lapa Formation, however, are not entirely consistent with derivation solely from the craton and may indicate contribution from younger sources, such as the Neoproterozoic Goiás Magmatic Arc.  相似文献   

18.
The Lower Cambrian Usol’e Formation in the Kamov arch of the Baikit anteclise includes stratiform intrusions confined to several levels. According to isotopic?geochronological investigations, the age of stratiform intrusions composed of olivine dolerites is estimated to be 256.0 ± 3.2 Ma.  相似文献   

19.
Increased interest in paleoenvironmental studies is a result of climatic changes occurring at present and predicted for the future. Such studies could be done using the stable isotope compositions (δ2H and δ18O) of kaolins, which provide knowledge on the paleoenvironmental conditions prevailing during the time of kaolinisation. In this study, the stable isotopic compositions of clay-size fraction of kaolins occurring in Cretaceous and Tertiary Formations of the Douala Sub-Basin in Cameroon are presented, with the aim of reconstructing the paleoenvironmental conditions of the Sub-Basin. To achieve this, the clay-size fraction (< 2 μm fraction) of 8 kaolinite-rich samples were analysed for their δ2H and δ18O compositions, and results were reported as part per mil (‰) relative to the SMOW standard. The δ18O values of kaolins found in the Cretaceous–Tertiary Formations of the Douala Sub-Basin varied between +18.2 and +21.0‰, whereas the δ2H values varied between –69 and –53‰. Nine of the eleven samples plotted on the right of the supergene–hypogene line. Five of these nine samples plotted very close to the kaolinite line, which represents the composition of kaolinite in equilibrium with meteoric water at 20 °C; suggesting a supergene weathering origin of these kaolins. The determination of the temperature of kaolinisation yielded mean formation temperatures of 22 ± 2 °C and 27 ± 6 °C for Cretaceous and Tertiary kaolins, respectively. Excluding the two samples falling in the hypogene field, averages of kaolinisation temperatures were 20 and 25 °C during the Cretaceous and Tertiary periods, respectively. These temperatures are slightly below the present mean annual temperature in Douala (27 °C), thereby suggesting that the climate was becoming warmer from the Cretaceous to the Present. Therefore, Douala had a cooler and rainy climate during the Cretaceous, and the climate is gradually becoming hotter and more humid, favouring the refinement of existing kaolins and the kaolinisation of kaolin-forming minerals in the Sub-Basin.  相似文献   

20.
The first results of SHRIMP dating of magmatic complexes and associated gold–silver deposits and ore occurrences (Kupol, Dvoinoe, Moroshka, and others) in the Chukotka sector of the Russian Arctic coast are discussed. The petrological and isotopic–geochronological data are used for reconstructing their formation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号