首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Structural Geology》1999,21(8-9):1027-1038
Large normal faults are corrugated. Corrugations appear to form from overlapping or en échelon fault arrays by two breakthrough mechanisms: lateral propagation of curved fault-tips and linkage by connecting faults. Both mechanisms include localized fault-parallel extension and eventual abandonment of relay ramps. These breakthrough mechanisms produce distinctive hanging wall and footwall geometries indicative of fault system evolution. From such geometries, we can estimate the positions of tilted relay ramps or ramp segments and ramp internal deformation in incompletely exposed or poorly imaged fault systems. We examine the evolution of normal fault corrugations at Fish Slough (California), Yucca Mountain (Nevada), and Pleasant Valley (Nevada), in the Basin and Range province. We discuss how evolution of the Pleasant Valley and Yucca Mountain systems relates to seismicity. For example, the 1915 Pleasant Valley earthquake produced four en échelon ruptures that appeared as overlapping segments of a single immature fault at depth. At Yucca Mountain, we argue that an en échelon array, which includes the Solitario Canyon and Iron Ridge faults, should be considered a single source, such that western Yucca Mountain could experience up to a Mw 6.9 earthquake compared to Mw 6.6 estimates for the largest individual segment.  相似文献   

2.
大杨树盆地的构造特征及变形期次   总被引:4,自引:0,他引:4  
大杨树盆地是叠置于大兴安岭造山带的东部,与松辽盆地紧邻,呈北北东向长条带状展布的中新生代断陷-坳陷型盆地。大杨树盆地经历了多期变形作用,具有以伸展构造为主、并被挤压构造和反转构造叠加的构造特征。早白垩世龙江期主要受到了NWW—SEE向的拉伸作用,形成一系列北北东向控陷犁式正断层组合,在控陷断层的上盘发育小型箕状断陷;早白垩世九峰山期,大杨树盆地受挤压作用控制,使早期形成的断陷盆地发生反转作用,形成正反转构造,同时在某些地段形成逆冲断层和断层传播褶皱;早白垩世甘河期,大杨树盆地再次受到伸展作用,形成了一系列北北东向小型断陷。早白垩世晚期(甘河期之后)—晚白垩世早期,大杨树盆地受到强烈的挤压作用,使早期控陷正断层出现正反转作用,在盆地的浅部形成大型断层传播褶皱,使大杨树盆地全面隆升遭受剥蚀。第四纪大杨树盆地具有伸展的特征,发育一系列小型伸展断陷。  相似文献   

3.
A detailed field study of 39 centimetre- to metre-scale relay ramps from two outcrops was performed to investigate the development of a linkage criterion for segmented normal faults. We analysed the displacement distribution and the geometry of fault arrays containing three types of relay ramp: open, linked, and fully breached, in order to identify which parameters are relevant to fault linkage, and to establish a linkage criterion. Each relay ramp geometry has a specific graphical field on a relay displacementseparation diagram. The field including all the linked geometries (initiation of linkage) separates open and fully breached relay ramps and is interpreted as a value of relay displacement to separation ratio for which faults link during their overlap. A ‘linkage threshold’, in each studied fault system, is defined as the best-fit linear trend of linked relays. We discuss the scaling and the variability of the linkage criterion using published datasets from a wide variety of settings and scales. The observed linkage threshold is linear, with a slope value varying less than one order of magnitude. This suggests that linking relay ramps have self-similar geometries from centimetre- to kilometre-scale and that normal fault linkage is governed by similar fault interaction across a broad range of scales. The linkage criterion, which can be an effective tool to estimate relay ramp geometry at depth or at the earth surface, could therefore be used to improve investigations in determining fluid entrapment or in the evaluation of potential surface of seismic ruptures.  相似文献   

4.
Initiation and formation of folds and the Kazerun high-angle fault zone, in the Zagros fold-and-thrust belt, were related to the continuing SW–NE oriented contraction that probably initiated in the Late Cretaceous, and intensified, starting in Miocene, when the Arabian and Eurasian plates collided. The contraction that led to folding and thrusting of the Phanerozoic sequence in the belt has led to the strike–slip reactivation of basement faults that formed during the Precambrian. Two major systems of fractures have developed, under the same regional state of contraction, during the folding and strike–slip faulting processes. Folding led to the formation of a system of fold-related fractures that comprises four sets of fractures, which include an axial and a cross-axial set that trend parallel and perpendicular to the confining fold axial trace, respectively, and two oblique sets that trend at moderate angles to the axial trace. Slip along high-angle, strike–slip faults formed a system of fractures in the damage zone of the faults (e.g., Kazerun), and deformed folds that existed in the shear zone by rotating their axial plane. This fault-related fracture system is made of five sets of fractures, which include the two sets of Riedel shear fractures (R and R′), P- and Y-shear fractures, and an extensional set.

Remote sensing analysis of both fracture systems, in a GIS environment, reveals a related kinematic history for folding outside of the Kazerun shear zone and faulting and deformation (fracturing and rotation of folds) within the Kazerun fault zone. Rotation of the folds and formation of the five sets of the fault-related fractures in the Kazerun shear zone are consistent with a dextral motion along the fault. The mean trends of the shortening directions, independently calculated for the fold- and fault-related fracture systems, are remarkably close (N53 ± 4°E and N50 ± 5°E, respectively), and are perpendicular to the general NW–SE trend of the Zagros fold-and-thrust belt. Although segments of the Kazerun fault are variably oriented within a narrow range, the angular relationships between sets of fault-related fractures and these segments remain constant.  相似文献   


5.
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest–southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa–Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.  相似文献   

6.
In thrust belts, fold–fault terminations are common features of the structural architecture and can pose complicated problems to unravel, in particular when two or more terminations are in close proximity. Such terminations usually reflect pre-existing attributes. Amongst the many factors, lateral variations in the mechanical stratigraphy can control along-strike geometry and kinematics of fault-related folds.A displacement transfer zone was produced in a compressional sandbox model by means of two adjacent, mechanically different stratigraphic domains. The experiment allowed two discrete chains to develop in the different domains, so that a complex structural setting occurred in the connecting area. Periclinal folds, oblique thrust fronts and oblique ramps developed in the resulting transfer zone. The interaction between periclines in the transfer zone produced lateral culminations in the folded structures. The analysis of displacement across the structural domains revealed that a significant loss of slip along the faults occurred in the relay zone. In this area, imbricate faulting was partially replaced by layer-parallel shortening. A linear relationship appears to exist between the bed length of the thrust sheet and the related fault slip.  相似文献   

7.
Relay ramps are a common feature formed during the growth of normal fault systems. We performed analogue experiments to investigate the structure and evolution of relay ramps. An extending rubber sheet induces extension at the base of a sand pack (brittle crust analogue). Silicone bars between the rubber and the sand control the location of fault nucleation. We tested the role of fault spacing, fault length, overlap length and fault strike in the evolution of relay ramps. The modelled relay ramps evolved in three stages, characterized by the growth of the normal faults, their interaction and linkage. Interaction and linkage occurred only when the combined length of the two interacting faults was larger than eight times their spacing. The length to width ratio of the relay ramps during the interaction stage showed preferred geometries, clustering around three. The propagation of the fault tips was observed both before and after the linkage stage. Overlap length and spacing relations of the modelled relay ramps are similar to those in nature, at different scales, and can be explained using existing mechanical models. Nevertheless, the further propagation of the fault tips after linkage has not been described previously.  相似文献   

8.
《Geodinamica Acta》2013,26(3):145-167
Folds constitute a significant part within the dominantly extension-related deformation pattern of the Gediz Graben and their origin either extensional or contractional has been the subject of debate. Field and subsurface data presented in this paper suggest that folds of contractional and extensional origin coexist in the graben-fill sediments. Contractional folds are predominantly observed within the Alasehir formation. A north vergent, plunging, asymmetrical to overturned geometry characterizes these folds and they are commonly observed in association with south dipping both thrust and reverse faults; the presence of thrust/reverse faults in the Gediz Graben is documented for the first time here. Fault data suggest an approximately N–S direction of compression that has governed the contractional deformation. Yet the limited distribution of these structures prevents to relate them with confidence to a regional deformation phase.

Extensional folds occur in association with normal faults either as structures longitudinal or transverse with respect to the general graben trend. Transverse folds are a very common within the buried graben block, owing to the lateral displacement gradients (lateral difference in offset) on the individual fault segments along the southern margin of the graben. Synclines and anticlines have formed at displacement maxima and minima, respectively. Thickness of strata increases at synclines and decreases at anticlines, thus indicating the syn-depositional origin of the folding.  相似文献   

9.
The Ramshorn Peak area of the Idaho-Wyoming thrust belt lies in the toe of the Prospect thrust sheet along the eastern margin of the exposed part of the thrust belt. The terrain is folded with axes trending N-S and wavelengths ranging from 3 to 4.3 km. Thrusts occur exclusively along the eastern part of the map area where the toe of the Prospect thrust sheet is thinnest. The easternmost thrusts are backthrusts.Monoclinally folded rocks are thrust on less deformed rocks south of Ramshorn Peak. This fold and fault complex is interpreted to have formed by thrusting over a large oblique and small forward step. The oblique step is responsible for the formation of the monocline in the hanging wall of the thrust. All faults and associated folds are rotated by subsequent buckle folding.Second- and third-order folds (folds at the scale of the Ramshorn Peak fold and fault complex and smaller) appear to be isolated features associated with faults (fault-related folds rather than buckle folds) because they are not distributed throughout the map area. These folds were probably initiated by translation and adhesive drag. The early folding was terminated by large translation over a stepped thrust surface which caused additional folding as the hanging wall rocks conformed to the irregular shape of the footwall. The Rich model is utilized to explain the Ramshorn Peak complex because the fold is of monoclinal form and is an isolated feature rather than part of a buckle fold wave-train.  相似文献   

10.
Field examples of fault-related folds were observed in the south-western margin of the Sirt basin, south-central Libya. Single or paired (conjugate) monoclines, drape synclines, special drag faults can be put in a geometric and evolutionary model, which describes the propagation of basement faults to overlying sediments. At the first stage of evolution the propagating normal or oblique-slip faults show segmentation along-dip direction. Fault segments are separated by continuous, moderately to strongly bended horizons, which show different degrees of diagenesis than surrounding intervals. Fault-related folding and faulting was coeval with lithification of certain carbonate levels. Their gradual cementation increased the rigidity of layers promoting discrete faulting and breaching of fault-related folds. However, folding can be maintained up to the extent when layer dip approaches the dip of the propagating fault zone. This type of deformation can be characteristic for sequences consisted of lithified carbonates sandwiched between thicker marl/shale intervals.  相似文献   

11.
喜马拉雅造山带中段定结地区拆离断层   总被引:1,自引:1,他引:1  
定结地区位于喜马拉雅造山带中段,发育大量的低角度伸展拆离断层,这些拆离断层中部分构成了藏南拆离系的主体。它们基本上垂直于造山带走向伸展,各拆离断层特征显著,普遍发育糜棱岩,糜棱岩类型复杂,主要有硅质糜棱岩、长英质糜棱岩、花岗质糜棱岩。在研究区的北部,拆离断层呈环状产出,构成变质核杂岩三层结构中的中间层,规模一般较大;同时拆离断层使变质核杂岩体盖层中的部分地层拆离减薄;在研究区南部拆离断层呈线状延伸很远,总体上平行造山带延伸,构成了藏南拆离系重要组成部分。部分拆离断层同韧性剪切带平行产出,形成拆离剪切的脆韧性体系。  相似文献   

12.
In this paper, we analyze small scale examples of thrust faults and related folding in outcrops of the Cretaceous Boquillas Formation within Big Bend National Park in west Texas to develop detailed understanding of the fault nucleation and propagation that may aid in the interpretation of larger thrust system structure. Thrust faults in the outcrop have maximum displacements ranging from 0.5 cm to 9 cm within competent limestone beds, and these displacements diminish both upward into anticlines and downward into synclines within the interbedded and weaker mudrock layers. We interpret the faults as having nucleated within the competent units and partially propagated into the less competent units without developing floor or roof thrusts. Faults that continued to propagate resulted in hanging wall anticlines above upwardly propagating fault tips, and footwall synclines beneath downwardly propagating fault tips. The observed structural style may provide insights in the nucleation of faults at the formation scale and the structural development at the mountain-range scale. Décollement or detachment layers may be a consequence rather than cause of thrust ramps through competent units and could be over interpreted from seismic data.  相似文献   

13.
The NW-dipping Fiery Creek Fault System, located in the northern Mount Isa terrane, comprises numerous sub-parallel faults that record multiple episodes of Palaeo- to Mesoproterozoic movement. Hanging wall wedge-shaped stratal geometries and marked stratal thickness variation across the fault system indicate that the earliest movement occurred during episodic intracontinental extension (Mount Isa Rift Event; ca. 1710–1655 Ma). Reactivation of the fault system during regional shortening and basin inversion associated with the Mesoproterozoic Isan Orogeny (ca. 1590–1500 Ma) resulted in complex three-dimensional hanging wall geometries and highly variable strain in the hanging wall strata along the fault system. This has resulted in the development of discrete hanging wall deformation compartments, that are characterised by different structural styles. High strain compartments are characterised by relatively intense folding and the development of break-back thrusts, whereas low strain compartments are only weakly folded. Variations in hanging wall strain are attributed to selective reactivation of normal fault segments, controlled by the pre-inversion fault dip and lithological contrasts across the faults. Variation of the pre-inversion fault dip is interpreted to have been caused by episodic tilt-block rotation during crustal extension. Moderately dipping faults active early in the Mount Isa Rift Event show the greatest degree of reactivation, whereas younger and steeper normal faults have behaved as buttresses during inversion with strain focussed in zones of upright folding in the hanging wall.  相似文献   

14.
Experimental (clay) models of inversion structures   总被引:3,自引:0,他引:3  
Experimental modeling is used to study the geometry and evolution of inversion structures. Two main types of inversion structures are analyzed:

1. (1) structures formed by fault-propagation folding; and

2. (2) structures formed by fault-bend folding on listric faults.

Fault-propagation inversion structures initially develop as broad drape folds with possible fault breakthrough during an early extensional phase. Syn-extensional strata deposited in the hanging wall typically thicken away from the fault. Compressional reactivation results in reversal of slip on the master and secondary faults, their rotation to shallower dips, and the development of a compressional fault-propagation fold. Key features of the fault-propagation fold are basinward thickening of syn-extensional units and resulting steep dips of the front limb of the structure. Fault-bend inversion structures initiate as rollover folds within extensional half-graben. Deformation is primarily localized along a system of antithetic faults. Syn-extensional strata typically thicken across the fault but also thin basinward away from the fault. During compression, the extensional rollover folds are folded into compressional fault-bend folds. Key features of this structure are thinning of syn-extensional units into the basin. Inversion of more symmetric graben results in a doubly-convex geometry of syn-extensional units. These observations of bed geometry and thickness provide predictive models for interpreting the geometries of inversion structures in areas of poor data quality.  相似文献   


15.
The conspicuous curved structures located at the eastern front of the Eastern Cordillera between 25° and 26° south latitude is coincident with the salient recognized as the El Crestón arc. Major oblique strike-slip faults associated with these strongly curved structures were interpreted as lateral ramps of an eastward displaced thrust sheet. The displacement along these oblique lateral ramps generated the local N–S stress components responsible for the complex hanging wall deformation. Accompanying each lateral ramp, there are two belts of strong oblique fault and folding: the upper Juramento River valley area and El Brete area.On both margins of the Juramento River upper valley, there is extensive map-scale evidence of complex deformation above an oblique ramp. The N–S striking folds originated during Pliocene Andean orogeny were subsequently or simultaneously folded by E–W oriented folds. The lateral ramps delimiting the thrust sheet coincident with the El Crestón arc salient are strike-slip faults emplaced in the abrupt transitions between thick strata forming the salient and thin strata outside of it. El Crestón arc is a salient related to the pre-deformational Cretaceous rift geometry, which developed over a portion of this basin (Metán depocenter) that was initially thicker. The displacement along the northern lateral ramp is sinistral, whereas it is dextral in the southern ramp. The southern end of the Eastern Cordillera of Argentina shows a particular structure reflecting a pronounced along strike variations related to the pre-deformational sedimentary thickness of the Cretaceous basin.  相似文献   

16.
We investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand how the geometry of major faults evolved to form the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze faults that constitute the rift boundary and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement and depth of the basement obtained in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault systems, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of these faults. These fault systems are composed of minor faults that we define as segments. The variation of the displacements along the fault segments indicates that the fault systems were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in the Early Cretaceous.  相似文献   

17.
武功山北缘剥离断层、近水平韧性剪切带与伸展构造   总被引:1,自引:0,他引:1  
覃兆松 《现代地质》1990,4(1):101-106
武功山北缘的伸展构造结构完整,系由以脆性变形的上拆离盘及近水平的韧性剪切带为代表的变质核杂岩体所组成。上拆离盘组成于一系列的北倾犁式正断层系及拉张断陷盆地;变质核杂岩体的岩石以舌状—饼状褶皱、片理化、拉伸线理及条带状糜棱岩等近水平的韧性剪切变形为其特征。根据由伸展构造所控制的拉伸断陷盆地的沉积物时代来推测,武功山北缘的伸展构造可能发生于印支运动晚期。  相似文献   

18.
正断层位移长度关系是近年来研究正断层的一种常用方法 ,它将断层的研究从二维扩展到三维。研究正断层位移长度关系对于研究正断层演化、盆地演化以及油气勘探等方面具有重要意义。讨论了影响正断层位移距离剖面形态的主要因素 :断层端的脆韧性变形、围岩强度、远程应力以及断层之间的相互作用和连接等。根据正断层位移距离剖面的几何形态和断层发育阶段 ,可将断层的位移模式分为 3个类型 :(1)对称的椭圆状或钟状代表简单的单条断层 ;(2 )不对称的似椭圆状或钟状代表断层间的相互作用 ;(3)不规则的锯齿状代表由多条断层连接而成的断层。介绍了伴随正断层发育的传递斜坡、盆内高地等构造单元以及断层位移距离剖面的测量制作方法。测量时应注意恢复其剥蚀部分。  相似文献   

19.
The Gorgon Platform is located on the southeastern edge of the Exmouth Plateau in the North Carnarvon Basin, North West Shelf, Australia. A structural analysis using three-dimensional (3D) seismic data has revealed four major sets of extensional faults, namely, (1) the Exmouth Plateau extensional fault system, (2) the basin bounding fault system (Exmouth Plateau–Gorgon Platform Boundary Fault), (3) an intra-rift fault system in the graben between the Exmouth Plateau and the Gorgon Platform and (4) an intra-rift fault system within the graben between the Exmouth Plateau and the Exmouth Sub-basin. Fault throw-length analyses imply that the initial fault segments, which formed the Exmouth Plateau–Gorgon Platform Boundary Fault (EG Boundary Fault), were subsequently connected vertically and laterally by both soft- and hard-linked structures. These major extensional fault systems were controlled by three different extensional events during the Early and Middle Jurassic, Late Jurassic and Early Cretaceous, and illustrate the strong role of structural inheritance in determining fault orientation and linkage. The Lower and Middle Jurassic and Upper Jurassic to Lower Cretaceous syn-kinematic sequences are separated by unconformities.  相似文献   

20.
吐木休克断裂位于塔里木盆地西部,巴楚隆起和阿瓦提凹陷之间,是一条大型基底卷入型冲断构造。走向NW‐SE,呈弧形向NEE凸出;倾向巴楚隆起。根据构造变形特征,断裂自NW向SE可以划分为4段。Ⅰ和Ⅲ段为简单基底卷入型冲断构造段;Ⅱ段发育背冲断层,与主干断层呈“y”字型剖面组合关系;Ⅳ段为基底卷入型楔状构造,主冲断层顶部出现一条向巴楚隆起逆冲的反冲断层。断裂上盘发育背斜,下盘有明显的“牵引构造”,显示吐木休克断裂可能是由吐木休克背斜北翼突破形成的,是一条褶皱相关断层。吐木休克断裂形成于中新世晚期至上新世初,持续演化至第四纪。断裂带上发育的上新世末—第四纪初正断层代表印度—亚洲碰撞脉动式远程效应的一个构造间歇期。吐木休克断裂东侧的巴东断裂是巴楚隆起与塔中隆起的过渡构造带,雏形形成于奥陶纪晚期—志留纪,晚新生代复活。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号