首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Via a study of the evolutionary tracks of 3∼10 M stars on the Hertzsprung-Russell diagram, the variations of the energy, density, temperature at the peak of helium-shell burning, ratio of surface luminosity of helium shell to stellar surface luminosity as well as the stellar radius are analyzed. Then the demarcation point of medium-mass stars in the evolution from early AGB stars to thermally pulsing AGB stars on the HR diagram is determined, and for 119 carbon stars our analysis agrees rather well with observation. At the same time the following is suggested. After arriving at this demarcation point in stellar evolution, in the formula of the loss of stellar wind material it is probably needed to introduce a quantity which is not concerned with the surface luminosity, but it dominates the formation of super stellar wind. On this basis and via the analysis of the structure and evolution of 5 M stars as well as the rate of mass loss of stellar wind, it is found that the effect of turbulent pressure on the mass loss of stellar wind in the stage of thermally pulsing AGB stars is rather great, hence the turbulent pressure of thermally pulsing AGB stars cannot be overlooked. Furthermore, the physical factors which possibly affect the matter loss of the stellar winds of thermally pulsing AGB stars are suggested.  相似文献   

2.
We explore the predictions of the standard hierarchical clustering scenario of galaxy formation, regarding the numbers and metallicities of PopIII stars that are likely to be found within our Galaxy today. By PopIII we refer to stars formed at large redshift ( z >4), with low metallicities ([ Z /Z]<−2.5) and in small systems (total mass ≲ 2×108 M) that are extremely sensitive to stellar feedback, and which through a prescribed merging history end up becoming part of the Milky Way today. An analytic, extended Press–Schechter formalism is used to obtain the mass functions of haloes which will host PopIII stars at a given redshift, and which will end up in Milky Way sized systems today. Each of these is modelled as a mini-galaxy, with a detailed treatment of the dark halo structure, angular momentum distribution, final gas temperature and disc instabilities, all of which determine the fraction of the baryons that are subject to star formation. The use of new primordial metallicity stellar evolutionary models allows us to trace the history of the stars formed, and give accurate estimates of their expected numbers today and their location in L /L versus T /K Hertzsprung–Russell (HR) diagrams. A first comparison with observational data suggests that the initial mass function (IMF) of the first stars was increasingly high-mass weighted towards high redshifts, levelling off at z ≳9 at a characteristic stellar mass scale m s=10–15 M.  相似文献   

3.
A program is developed for determining the history of star-forming galaxies based on the use of two- or multicolor photometry of the resolved stars in a given galaxy. We create a library of synthetic color-magnitude diagrams from theoretical stellar isochrones, taking the initial mass function, distance to the galaxy, internal and external absorption, and photometric errors into account. The resulting synthetic diagrams are combined linearly and compared quantitatively with photometric data for stars in a galaxy in order to determine star formation rates as a function of age and metallicity. This program is tested in detail under different conditions using artificial color-magnitude diagrams. Special attention is given to the limiting case when only the brightest stars of a galaxy can be seen in the color-magnitude diagram and the number of resolved stars is at most a few hundred. This limiting case corresponds to a large fraction of the nearby galaxies at distances of 3-5 Mpc observed by large ground based telescopes and the Hubble Space Telescope.  相似文献   

4.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

5.
Copious mass loss on the Asymptotic Giant Branch dominates the late stages of stellar evolution. Maps of extended circumstellar envelopes provide a history of mass loss and trace out anisotropic mass loss. This review concentrates on observations of millimeter wavelength molecular line emission, on high resolution maps of maser emission and on observations of submillimeter, millimeter and radio wavelength continuum emission. Radio continuum observations show that AGB stars are larger at radio than at optical wavelengths. The extended chromospheres indicated by these observations extend to distances from the star large enough for dust to form, thereby initiating mass loss. Molecular line maps have found time-variable mass loss for some stars, including detached shells indicating interrupted mass loss and evidence for a rapid increase in the mass loss rate at the end of the AGB phase. Maps of circumstellar envelopes show evidence of flattening, bipolar outflow and angular variations in both the mass loss rate and the outflow velocity. As stars evolve away from the AGB and planetary nebula formation begins, these structures become more pronounced, and fast bipolar molecular winds are observed. The time scales derived from the dynamical times of these winds and from the expansion rates of the central planetary nebulae are very rapid in some cases, about 100 years, in agreement with the predictions of stellar evolution theory.  相似文献   

6.
Along with the considerations of the effect of constraint of gravitation on the matter loss of stellar wind and the disturbances of the radiation pressure and turbulent pressure on it, by introducing the mechanism of compressible flow, the effect of promotion of the convective region in stellar outer shell on the matter loss of stellar wind is investigated. Hence a new formula of matter loss of stellar wind is established. After this and via the computation of the rate of mass loss of stellar wind in the theoretical model of 3∼5M? stars, the following is revealed. From the main sequence up to the stage of termination of central helium-core burning, the rate of mass loss of stellar wind calculated with the new formula agrees almost completely with that given by the classical formula. But in the TP-AGB stage the stellar model calculated with the new formula of mass loss of stellar wind is not affected by luminosity and gives rise to the persistent and large matter loss of stellar wind. This rather well agrees with the results of actual observations.  相似文献   

7.
《New Astronomy Reviews》2000,44(4-6):291-296
All model output of massive star evolution, i.e. the paths in the HR diagram, the lifetimes, the surface and wind composition, the chemical yields and the nature of the progenitors of supernovae strongly depend on both mass loss and rotation. We examine here specifically the effects of mass loss and rotation on the chemical yields of CNO elements. A major effect is that the importance of mass loss depends on the metallicity Z of the galaxies. This may also be the case for stellar rotation in massive stars, in the sense that average rotation may be faster at lower metallicities.  相似文献   

8.
We analyse the observed distribution of Eddington ratios  ( L / L Edd)  as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [   M */star formation rate (SFR) ∼  a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (   M */SFR ≫  a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.  相似文献   

9.
Abell 85 is a cD galaxy cluster in the southern hemisphere and has a redshift of 0.055. Based on the spectra of 242 member galaxies provided by the Sloan spectral survey data, using the stellar population constituents and star formation history of these member galaxies obtained from the population synthesis software STARLIGHT, we study the regularities of the variations of star formation properties of galaxies (such as the ages, metal abundances and star formation rates of the characteristic stellar populations) with the local surface density of galaxies. As revealed by the results, the galaxies situated in the highdensity environments of the central region of the cluster possess higher population ages and metal abundances, and their rates of star formation are rather low, the recent activities of star formation are obviously suppressed. Besides, the correlations of the galaxy metal abundance and speci?c star formation rate with the stellar mass are asserted.  相似文献   

10.
A very important property of very young and massive stars (BN objects) is their intensive mass loss. We describe the main methods to derive the mass loss rates. Available observations are used to characterize the ionized stellar winds and the CO flows. The results are confronted with theories describing the anisotropic mass loss.  相似文献   

11.
Simple theoretical arguments indicate that cooled interstellar gas in bright elliptical galaxies forms into a young stellar population having a bottom-heavy but optically luminous initial mass function extending to approximately 2 M middle dot in circle. When the colors and spectral features of this young population are combined with those of the underlying old stellar population, the apparent ages are significantly reduced, similar to the relatively young apparent ages observed in many elliptical galaxies. Galactic mergers are not required to resupply young stars. The sensitivity of continuous star formation to LB and LX&solm0;LB is likely to account for the observed spread in apparent ages among elliptical galaxies. Local star formation is accompanied by enhanced stellar Hbeta equivalent widths, stronger optical emission lines, more thermal X-ray emission, and lower apparent temperatures in the hot gas. The young stars should cause M&solm0;L to vary with galactic radius, perturbing the fundamental plane of the old stars alone.  相似文献   

12.
We present new near-infrared J and K imaging data for 67 galaxies from the Universidad Complutense de Madrid (UCM) survey used in the determination of the SFR density of the local Universe by Gallego et al. This is a sample of local star-forming galaxies with redshift lower than 0.045, and they constitute a representative subsample of the galaxies in the complete UCM survey. From the new data, complemented with our own Gunn- r images and long-slit optical spectroscopy, we have measured integrated K -band luminosities, r − J and J − K colours, and H α luminosities and equivalent widths. Using a maximum likelihood estimator and a complete set of evolutionary synthesis models, these observations allow us to estimate the strength of the current (or most recent) burst of star formation, its age, the star formation rate and the total stellar mass of the galaxies. An average galaxy in the sample has a stellar mass of 5×1010 M and is undergoing (or has recently completed) a burst of star formation involving about 2 per cent of its total stellar mass. We identify two separate classes of star-forming galaxies in the UCM sample: low-luminosity, high-excitation galaxies (H  ii like ) and relatively luminous spiral galaxies (starburst disc- like ). The former show higher specific star formation rates (SFRs per unit mass) and burst strengths, and lower stellar masses than the latter. With regard to their specific star formation rates, the UCM galaxies are intermediate objects between normal quiescent spirals and the most extreme H  ii galaxies.  相似文献   

13.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

14.
The URCA neutrino loss rate from a hot stellar environment is investigated. The results indicate that the loss rates for URCA type processes from even mass number nuclei are comparable to the rates from odd mass number nuclei at temperatures above about 109 K. Rates are calculated for some typical odd mass isobar pairs and for the even mass isobar fifty-six for temperatures between 5×108 K to 5×1010 K.Supported in part by National Science Foundation Grant GP13959.  相似文献   

15.
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from the surfaces of a disc. The disc inflow leads to the bending of the poloidal magnetic field lines, and centrifugally driven magnetic winds can be launched when the bending exceeds a critical value. Such winds can result in angular momentum transport at least as effective as turbulent viscosity, and hence they can play a major part in driving the disc inflow.
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems.  相似文献   

16.
Well-determined physical parameters of 130 W Ursae Majoris (W UMa) systems were collected from the literature. Based on these data, the evolutionary status and dynamical evolution of W UMa systems are investigated. It is found that there is no evolutionary difference between W- and A-type systems in the   M – J   diagram, which is consistent with the results derived from the analysis of observed spectral type and of   M – R   and   M – L   diagrams of W UMa systems.   M – R   and   M – L   diagrams of W- and A-type systems indicate that a large amount of energy should be transferred from the more massive to the less massive component, so that they are not in thermal equilibrium and undergo thermal relaxation oscillation. Moreover, the distribution of angular momentum, together with the distribution of the mass ratio, suggests that the mass ratio of the observed W UMa systems decreases with decreasing total mass. This could be the result of the dynamical evolution of W UMa systems, which suffer angular momentum loss and mass loss as a result of the magnetic stellar wind. Consequently, the tidal instability forces these systems towards lower q values and finally to rapidly rotating single stars.  相似文献   

17.
A stellar core becomes somewhat less massive due to neutrinos radiated away during its collapse in a neutron star or a black hole. The paper deals with the hydrodynamic motion of stellar envelope induced by such a mass loss. Depending on the structure of the outer stellar layers, the motion results either in ejection of an envelope with mass and energy proper for Nova outbursts; or nearly instantaneous excitation of strong pulsations of the star; or lastly in a slow slipping away of the whole stellar envelope. These phenomena are of importance when more powerful events, like supernova outbursts presumably associated with gravitational collapse, are absent. Such secondary indications of gravitational collapse are of special interest, since they may be a single observable manifestation (besides neutrinos and gravitational waves) of massive black hole formation.  相似文献   

18.
We present a study of pixel colour–magnitude diagrams (pCMDs) for a sample of 69 nearby galaxies chosen to span a wide range of Hubble types. Our goal is to determine how useful a pixel approach is for studying galaxies according to their stellar light distributions and content. The galaxy images were analysed on a pixel-by-pixel basis to reveal the structure of the individual pCMDs. We find that the average surface brightness (or projected mass density) in each pixel varies according to galaxy type. Early-type galaxies exhibit a clear 'prime sequence' and some pCMDs of face-on spirals reveal 'inverse-L' structures. We find that the colour dispersion at a given magnitude is found to be approximately constant in early-type galaxies but this quantity varies in the mid and late types. We investigate individual galaxies and find that the pCMDs can be used to pick out morphological features. We discuss the discovery of 'Red Hooks' in the pCMDs of six early-type galaxies and two spirals and postulate their origins. We develop quantitative methods to characterize the pCMDs, including measures of the blue-to-red light ratio and colour distributions of each galaxy and we organize these by morphological type. We compare the colours of the pixels in each galaxy with the stellar population models of Bruzual & Charlot to calculate star formation histories for each galaxy type and compare these to the stellar mass within each pixel. Maps of pixel stellar mass and mass-to-light ratio are compared to galaxy images. We apply the pCMD technique to three galaxies in the Hubble Ultra Deep Field to test the usefulness of the analysis at high redshift. We propose that these results can be used as part of a new system of automated classification of galaxies that can be applied at high redshift.  相似文献   

19.
王放  郑宪忠 《天文学报》2011,52(2):105-114
从观测上测定早型星系中恒星形成活动随红移的演化有助于理解这类星系的形成演化.结合GEMS(Galaxy Evolution from Morphology and SEDs)巡天的HST/ACS(Hubble Space Telescope/Advanced Camera for Surveys)高分辨图像和CDFS(ChandraDeep Field South)天区Spitzer、GALEX(Galaxy Evolution Explorer)等多波段数据,基于形态、颜色和恒星质量选出一个0.2≤z≤1.0红移范围的包含456个早型星系的完备样本.利用stacking技术测量了样本星系紫外与红外平均光度,估计早型星系的恒星形成率.结果显示,早型星系中的恒星形成率较低(<3 M·yr-1),随红移递减而降低.在红移z=1以来的恒星形成贡献的质量小于15%.星族分析亦肯定大质量早型星系的主体星族形成于宇宙早期(z>2).  相似文献   

20.
It has been recently shown that the dynamical V -band mass-to-light ratios of compact stellar systems with masses from 106 to  108 M  are not consistent with the predictions from simple stellar population models. Top-heavy stellar initial mass functions (IMFs) in these so-called ultra-compact dwarf galaxies (UCDs) offer an attractive explanation for this finding, the stellar remnants and retained stellar envelopes providing the unseen mass. We therefore construct a model which quantifies by how much the IMFs of UCDs would have to deviate in the intermediate- and high-mass range from the canonical IMF in order to account for the enhanced   M / LV   ratio of the UCDs. The deduced high-mass IMF in the UCDs depends on the age of the UCDs and the number of faint products of stellar evolution retained by them. Assuming that the IMF in the UCDs is a three-part power law equal to the canonical IMF in the low-mass range and taking 20 per cent as a plausible choice for the fraction of the remnants of high-mass stars retained by UCDs, the model suggests the exponent of the high-mass IMF to be ≈1.6 if the UCDs are  13 Gyr  old (i.e. almost as old as the Universe) or ≈1.0 if the UCDs are  7 Gyr  old, in contrast to 2.3 for the Salpeter–Massey IMF. If the IMF was as top heavy as suggested here, the stability of the UCDs might have been threatened by heavy mass loss induced by the radiation and evolution of massive stars. The central densities of UCDs must have been in the range  106 to 107 M pc−3  when they formed with star formation rates of  10 to 100 M yr−1  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号