首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a workflow for automating the extraction of elevation-derived stream lines using open source tools with parallel computing support and testing the effectiveness of procedures in various terrain conditions within the conterminous United States. Drainage networks are extracted from the US Geological Survey 1/3 arc-second 3D Elevation Program elevation data having a nominal cell size of 10 m. This research demonstrates the utility of open source tools with parallel computing support for extracting connected drainage network patterns and handling depressions in 30 subbasins distributed across humid, dry, and transitional climate regions and in terrain conditions exhibiting a range of slopes. Special attention is given to low-slope terrain, where network connectivity is preserved by generating synthetic stream channels through lake and waterbody polygons. Conflation analysis compares the extracted streams with a 1:24,000-scale National Hydrography Dataset flowline network and shows that similarities are greatest for second- and higher-order tributaries.  相似文献   

2.
Drainage networks are one of the main elements characterizing basins, and network topology and geometry form the basis of many hydrological and geomorphological models (eg Geomorphological Unitary Hydrograph). The identification and manual delineation of channel networks from maps or aerial photographs requires much time and effort. In the last two decades, algorithms and procedures for automated extraction of drainage networks from digital elevation data have been developed and implemented in many specialized software applications. Nevertheless, automatically delineated channel networks do not always show close agreement with manually delineated networks. This paper describes a comparative analysis between a drainage network automatically extracted from a gridded digital elevation model, and the drainage network delineated manually from stereographic pairs of aerial photographs. The analysis showed that the automatic extraction technique may be adequate for catchment headwaters, but is inappropriate in the middle and lower basins, especially for alluvial fans and calcareous platforms. The paper suggests improving the automatic extraction technique by adapting it to operate with different parameters for each of the geomorphological units within the catchment.  相似文献   

3.
利用ArcGIS生成水系密度的方法   总被引:2,自引:0,他引:2  
介绍利用地理信息系统软件ArcGIS生成水系密度图的思路和方法。文章以DEM数据为基础,利用ArcGIS中的水文分析功能自动提取水系。水系经过与网格相交、重新统计总长度、连接等操作,最后得到水系密度图。以徐州地区为例,说明该方法的通用性与可行性。  相似文献   

4.
In this study, we develop a new method using self-organizing maps (SOMs) for the selection of hydrographic model generalization. The most suitable attributes of the stream objects are used as input variables to the SOM. The attributes were weighted using Pearson’s chi-square independence test. We used the Radical Law to determine how many features should be selected, and an incremental approach was developed to determine which clusters should be selected from the SOM. Two drainage patterns (dendritic and modified basic) were obtained from the National Hydrography Datasets of United States Geological Survey at 1:24,000-scale (high resolution) and used in order to derive stream networks at 1:100,000-scale (medium resolution). The 1:100,000-scale stream networks, derived in accordance with the proposed approach, are similar to those in the original maps in both quantity and visual aspects. Stream density and pattern were maintained in each subunit, and continuous and semantically correct networks were obtained.  相似文献   

5.
Drainage systems are important components in cartography and Geographic Information Systems (GIS), and achieve different drainage patterns based on the form and texture of their network of stream channels and tributaries due to local topography and subsurface geology. The drainage pattern can reflect the geographical characteristics of a river network to a certain extent. To preserve the drainage pattern during the generalization process, this article proposes a solution to deal with many factors, such as the tributary length and the order in river tributary selection. This leads to a multi‐objective optimization problem solved with a Genetic Algorithm. In the multi‐objective model, different weights are used to aggregate all objective functions into a fitness function. The method is applied on a case study to evaluate the importance of each factor for different types of drainage and results are compared with a manually generalized network. The result can be controlled by assigning different weights to the factors. From this work, different weight settings according to drainage patterns are proposed for the river network generalization.  相似文献   

6.
Evaluation of the morphometric parameters requires preparation of drainage map, contour map, ordering of the various streams and measurements of catchment area, perimeter, relative relief, relief ratio, length of drainage channels, drainage density, drainage frequency, bifurcation ratio, texture ratio, circulatory ratio and constant channel maintenance, which help to understand the nature of the drainage basin. The present study involves the Geographic Information System (GIS) analysis techniques to evaluate and compare linear, relief and aerial morphometry of the five subwatersheds of Song River (tributary of the Ganga River) with special reference to landslide incidences, for future development and planning of the watershed. Jakhan Rao, Song River, Bandal Nadi, Baldi Nadi and Suswa Nadi are the five major subwatersheds of the Song River basin. All the subwatersheds are basically of 5th to 6th order. Drainage patterns are mainly dendritic to sub dendritic. The drainage pattern of the Song River basin is mainly structurally controlled and the area is characterized by high to moderate relief. The asymmetric factor indicates that the tectonic rotation of the four subwatersheds is upward on the right side of the drainage basin and only one sub-watershed is downward. The numbers of the landslide incidences are also more in the upward side, than the downward side of the Song River basin.  相似文献   

7.
ABSTRACT

Massive social media data produced from microblog platforms provide a new data source for studying human dynamics at an unprecedented scale. Meanwhile, population bias in geotagged Twitter users is widely recognized. Understanding the demographic and socioeconomic biases of Twitter users is critical for making reliable inferences on the attitudes and behaviors of the population. However, the existing global models cannot capture the regional variations of the demographic and socioeconomic biases. To bridge the gap, we modeled the relationships between different demographic/socioeconomic factors and geotagged Twitter users for the whole contiguous United States, aiming to understand how the demographic and socioeconomic factors relate to the number of Twitter users at county level. To effectively identify the local Twitter users for each county of the United States, we integrate three commonly used methods and develop a query approach in a high-performance computing environment. The results demonstrate that we can not only identify how the demographic and socioeconomic factors relate to the number of Twitter users, but can also measure and map how the influence of these factors vary across counties.  相似文献   

8.
ABSTRACT

Big Earth Data has experienced a considerable increase in volume in recent years due to improved sensing technologies and improvement of numerical-weather prediction models. The traditional geospatial data analysis workflow hinders the use of large volumes of geospatial data due to limited disc space and computing capacity. Geospatial web service technologies bring new opportunities to access large volumes of Big Earth Data via the Internet and to process them at server-side. Four practical examples are presented from the marine, climate, planetary and earth observation science communities to show how the standard interface Web Coverage Service and its processing extension can be integrated into the traditional geospatial data workflow. Web service technologies offer a time- and cost-effective way to access multi-dimensional data in a user-tailored format and allow for rapid application development or time-series extraction. Data transport is minimised and enhanced processing capabilities are offered. More research is required to investigate web service implementations in an operational mode and large data centres have to become more progressive towards the adoption of geo-data standard interfaces. At the same time, data users have to become aware of the advantages of web services and be trained how to benefit from them most.  相似文献   

9.
The North American datum of 1983: Project methodology and execution   总被引:1,自引:0,他引:1  
A new adjustment of the geodetic control networks in North America has been completed, resulting in a new continental datum—the North American Datum of 1983 (NAD 83). The establishment ofNAD 83 was the result of an international project involving the National Geodetic Survey of the United States, the Geodetic Survey of Canada, and the Danish Geodetic Institute (responsible for surveying in Greenland). The geodetic data in Mexico and Central America were collected by the Inter American Geodetic Survey and validated by the Defense Mapping Agency Hydrographic/Topographic Center. The fundamental task ofNAD 83 was a simultaneous least squares adjustment involving 266,436 stations in the United States, Canada, Mexico, and Central America. The networks in Greenland, Hawaii, and the Caribbean islands were connected to the datum through Doppler satellite and Very Long Baseline Interferometry (VLBI) observations. The computations were performed with respect to the ellipsoid of the Geodetic Reference System of 1980. The ellipsoid is positioned in such a way as to be geocentric, and its axes are oriented by the Bureau International de l'Heure Terrestrial System of 1984. The mathematical model for theNAD readjustment was the height-controlled three-dimensional system. The least squares adjustment involved 1,785,772 observations and 928,735 unknowns. The formation and solution of the normal equations were carried out according to the Helmert block method. [Authors' note:This article is a condensation of the final report of the NAD 83 project. The full report (Schwarz,1989) contains a more complete discussion of all the topics.]  相似文献   

10.
CGCS2000精化及其全球拓展需要采用最新的模型,处理长期积累的大型GNSS观测网数据,大型GNSS网联合、快速和协同解算是空间基准精化、维持与服务的重要技术方向.在大数据技术背景下,以并行计算、云计算为代表的高性能计算技术逐渐成为大规模数据处理的首选方法.针对海量、多源、异构GNSS数据在解算处理与平差分析等方面面...  相似文献   

11.
Hydrologic analysis of microwatersheds is essential for water resources planning at large scale. Space based input for decentralized planning at panchayat level use high resolution DEM. Drainage and slope play important role in planning and Digital Elevations Models (DEM) are widely being used for estimation of hydrologic parameters which are useful as input for hydrologic models. The estimates vary as per resolution and type of DEM. This paper evaluates the suitability of DEM derived through Cartosat-1 satellite stereo data(CartoDEM) for hydrologic parameter estimation of microwatersheds and compares the results with Airborne Laser Terrain Mapper (ALTM) based DEM data. Comparison is based on the hydrologic parameters delineated in Geographical Information System. Microwatersheds are delineated and drainage length extracted using two different cell sizes for both DEMs. Correctness Index, Figure of Merit, visual comparison, Percent within buffer and Junction comparison method, compared extracted river network. Average watershed slope is calculated using three different methods. CartoDEM derived drainage is comparable with ALTM derived drainage. There is high correlation between Carto5 and Caro10 DEMs in terms of drainage delineation and slope calculation. Average watershed slope vary as per calculation methods but average channel slope value (S3) although less, is comparable across DEMs.  相似文献   

12.
从规则格网DEM自动提取汇水区域及其子区域的方法   总被引:12,自引:2,他引:10  
朱庆  田一翔  张叶廷 《测绘学报》2005,34(2):129-133
从DEM自动提取的汇水区域及其子区域信息对进一步的水文分析有着重要的辅助作用.在经过洼地处理的DEM及得到水流方向矩阵的基础上,本文提出并实现了一种汇水区域及其子区域的提取算法.该算法首先提取整个DEM区域内每条河流的汇水区域,然后按照不同的要求划分子区域.经过试验,与现有的方法相比,该算法在提取效率和结果准确性方面都有明显提高.  相似文献   

13.
This paper reports on generalization and data modeling to create reduced scale versions of the National Hydrographic Dataset (NHD) for dissemination through The National Map, the primary data delivery portal for USGS. Our approach distinguishes local differences in physiographic factors, to demonstrate that knowledge about varying terrain (mountainous, hilly or flat) and varying climate (dry or humid) can support decisions about algorithms, parameters, and processing sequences to create generalized, smaller scale data versions which preserve distinct hydrographic patterns in these regions. We work with multiple subbasins of the NHD that provide a range of terrain and climate characteristics. Specifically tailored generalization sequences are used to create simplified versions of the high resolution data, which was compiled for 1:24,000 scale mapping. Results are evaluated cartographically and metrically against a medium resolution benchmark version compiled for 1:100,000, developing coefficients of linear and areal correspondence.  相似文献   

14.
ABSTRACT

Allergic rhinitis (hay fever) resulting from seasonal pollen affects 15–30% of the population in the United States, and can exacerbate several related conditions, including asthma, atopic eczema, and allergic conjunctivitis. Timely monitoring, accurate prediction, and visualization of pollen levels are critical for public health prevention purposes, such as limiting outdoor exposure or physical activity. The low density of pollen detecting stations and complex movement of pollen represent a challenge for accurate prediction and modeling. In this paper, we reconstruct the dynamics of pollen variation across the Eastern United States for 2016 using space–time interpolation. Pollen levels were extracted according to a stratified spatial sampling design, augmented by additional samples in densely populated areas. These measurements were then used to estimate the space–time cross-correlation, inferring optimal spatial and temporal ranges to calibrate the space–time interpolation. Given the computational requirements of the interpolation algorithm, we implement a spatiotemporal domain decomposition algorithm, and use parallel computing to reduce the computational burden. We visualize our results in a 3D environment to identify the seasonal dynamics of pollen levels. Our approach is also portable to analyze other large space–time explicit datasets, such as air pollution, ash clouds, and precipitation.  相似文献   

15.
Drainage and lineaments play an important role in the flow of groundwater. The objective of this study is to assess the groundwater level and its relation to drainage and lineaments in a hard rock region of a part of Nalgonda district, Andhra Pradesh, southern India. The region predominantly comprise of granites and gneisses. Groundwater level was measured in 42 representative wells in this study area from March 2008 to January 2010 once in every two months. Observed groundwater levels were compared with drainage and dyke density. Groundwater level fluctuation in low drainage density region is generally greater than those in moderate and high drainage density regions. The dykes do not act as barriers for groundwater flow as they are highly weathered. The quantity and flow of groundwater in this region is predominantly controlled by drainage density, intensity of weathering and presence of fractures. Thus the study indicate that the drainage density play a major role in groundwater level fluctuation and as the dykes are weathered, they do not affect the groundwater flow in this shallow unconfined aquifer.  相似文献   

16.
The aim of this paper is to explore and describe a method of automated generalization designed to produce a map which strikes a balance between cartographic and hydrologic representations. Following a discussion of scholarly literature on generalization, we describe a novel method for automated generalization of hydrographic stream data, using the National Hydrography Data Set (NHDPlus) as an example.

Traditional hydrography shows a fairly uniform density of stream flowlines over space. While this is pleasing to the eye, traditional methods tend to under-represent rivers in humid areas and over-represent them in arid areas. We address this problem through a method in automated generalization to produce a high-quality presentation of hydrographic data, suitable for display as a wall map or in an atlas. Streams are pruned based on a variable flow threshold, derived from the local mean annual precipitation by a regression equation.

After running the model using different parameters, we produce a more satisfactory portrayal of stream networks in the United States that communicates the flow of water through rivers and reflects the regional climate. Specific advantages in generalizing with variable flow threshold include (1) the method allows for fine gradations in output scale; (2) the output maps tend to minimize density variations in the raw data; (3) the subjective criteria are easily derived; and (4) the method can be performed rapidly on large data sets, as long as the stream data has been enriched with reliable flow rates.  相似文献   

17.
Abstract

Leafy spurge is a troublesome weed on the northern Great Plains of the United States that chemicals and grazing management have not controlled. Remote sensing and geographic information system (GIS) technology have been used to detect and monitor numerous grassland related problems. The objectives of this study were to use both technologies to map and quantify the extent of leafy spurge within Theodore Roosevelt National Park and to provide information for managing the infestation. Analysis of the data indicated that 702 ha of the 18,680 ha park were infested by leafy spurge; however, leafy spurge populations occurring under dense woody canopies, in deep stream channels, and on steep slopes were not always detected. Infestations were especially dense in the western and southeast portions of the park. Most infestations were restricted to riparian zones and smaller drainage channels. Leafy spurge infestations decreased exponentially as distance from stream channels increased (r2=0.98). The significant association of leafy spurge with drainage channels suggests that the weed might be effectively managed on a watershed sub‐basin level. The joint use of GIS and remote sensing proved to be a powerful combination of tools which provided previously unavailable information about the extent and spatial dynamics of leafy spurge within the park. The results of this study will contribute to the development of a comprehensive leafy spurge management plan for Theodore Roosevelt National Park (South Unit).  相似文献   

18.
Multi-representation databases (MRDB) are used in several Geographical Information System applications for different purposes. MRDB are mainly obtained through model and cartographic generalizations. The model generalization is essentially achieved with the selection/elimination process in which a decision must be made to include or exclude the object at the target level. In this study, support vector machines (SVM) was, for the first time, used for the selection/elimination process in stream network generalization. Within this context, the attributes to be used as input data in the SVM method were determined and weighted according to the associations determined in a chi-squared independence test. 1:100,000-scale (medium resolution) stream networks were derived from two 1:24,000-scale (high resolution) stream networks with different patterns in the United States Geological Survey National Hydrography Data-sets. The derived stream networks were quite similar to the 1:100,000-scale original stream networks in both qualitative and visual aspects.  相似文献   

19.
To delineate channel networks from DEMs regardless of landform type, this article proposes a new method using slope-weighted flow accumulation. To validate the method, SRTM-3, a global DEM dataset with a resolution of approximately 90 m, was used for analysis of the Loess Plateau, China. Channel networks delineated with and without slope-weighted flow accumulation were derived in both uplands and hilly lands for comparison. In the weighted flow accumulation method, the thresholds for delineating the channels were defined by detecting a turning point in the frequency distribution of the weighted flow accumulation function or by visual similarity with drainage channels extracted from topographic maps. The channel networks delineated with weighting showed closer correlation with a topographic map than the channel networks without weighting, despite the differences in thresholds. Moreover, the channel networks delineated with weighting represented the differences between landform types, while the channel networks without weighting did not. Weighting on the basis of the slope angle shows promise as a general channel delineation method which reflects the actual topography due to its hydrogeomorphological functions.  相似文献   

20.
This study proposes multi‐criteria group decision‐making to address seismic physical vulnerability assessment. Granular computing rule extraction is combined with a feed forward artificial neural network to form a classifier capable of training a neural network on the basis of the rules provided by granular computing. It provides a transparent structure despite the traditional multi‐layer neural networks. It also allows the classifier to be applied on a set of rules for each incoming pattern. Drawbacks of original granular computing (GrC) are covered, where some input patterns remained unclassified. The study was applied to classify seismic vulnerability of the statistical units of the city of Tehran, Iran. Slope, seismic intensity, height and age of the buildings were effective parameters. Experts ranked 150 randomly selected sample statistical units with respect to their degree of seismic physical vulnerability. Inconsistency of the experts' judgments was investigated using the induced ordered weighted averaging (IOWA) operator. Fifty‐five classification rules were extracted on which a neural network was based. An overall accuracy of 88%, κ = 0.85 and R2 = 0.89 was achieved. A comparison with previously implemented methodologies proved the proposed method to be the most accurate solution to the seismic physical vulnerability of Tehran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号