首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Stability of interplay motions   总被引:2,自引:2,他引:0  
A family of rectilinear periodic solutions of the three-body problem, in which the central body collides alternately with each of the two other bodies, is investigated numerically for all values of the three masses. It is found that for every mass combination there exists just one solution of this kind. The linear stability of the orbits with respect to arbitrary three-dimensional perturbations is also investigated. Domains of stability and instability are displayed in a triangular mass diagram. Their boundaries form one-parameter families of critical orbits, which are tabulated. Limiting cases where one or two masses vanish are studied in detail. The domains of stability cover nearly one half of the total area in the mass diagram: this reinforces the conclusion that real triple stars might have motions of a kind entirely different from the usual hierarchical arrangement.  相似文献   

2.
We develop a new method to determine the linear mass power spectrum using the mass function of galaxy clusters. We obtain the rms mass fluctuation  σ( M )  using the expression for the mass function in the Press & Schechter, Sheth, Mo & Tormen and Jenkins et al. formalisms. We apply different techniques to recover the adimensional power spectrum  Δ2( k )  from  σ( M )  namely the   k eff  approximation, the singular value decomposition and the linear regularization method. The application of these techniques to the τCDM and ΛCDM GIF simulations shows a high efficiency in recovering the theoretical power spectrum over a wide range of scales. We compare our results with those derived from the power spectrum of the spatial distribution of the same sample of clusters in the simulations obtained by application of the classical Feldman, Kaiser & Peacock (FKP) method. We find that the mass function based method presented here can provide a very accurate estimate of the linear power spectrum, particularly for low values of k . This estimate is comparable to, or even better behaved than, the FKP solution.
The principal advantage of our method is that it allows the determination of the linear mass power spectrum using the joint information of objects of a wide range of masses without dealing with specific assumptions on the bias relative to the underlying mass distribution.  相似文献   

3.
Symmetric planar central configurations of five bodies: Euler plus two   总被引:2,自引:0,他引:2  
We study planar central configurations of the five-body problem where three of the bodies are collinear, forming an Euler central configuration of the three-body problem, and the two other bodies together with the collinear configuration are in the same plane. The problem considered here assumes certain symmetries. From the three bodies in the collinear configuration, the two bodies at the extremities have equal masses and the third one is at the middle point between the two. The fourth and fifth bodies are placed in a symmetric way: either with respect to the line containing the three bodies, or with respect to the middle body in the collinear configuration, or with respect to the perpendicular bisector of the segment containing the three bodies. The possible stacked five-body central configurations satisfying these types of symmetries are: a rhombus with four masses at the vertices and a fifth mass in the center, and a trapezoid with four masses at the vertices and a fifth mass at the midpoint of one of the parallel sides.  相似文献   

4.
We examine the physical processes of radiatively driven mass accretion on to galactic nuclei, owing to intensive radiation from circumnuclear starbursts. The radiation from a starburst not only causes the inner gas disc to contract via radition flux force, but also extracts angular momentum owing to relativistic radiation drag, thereby inducing an avalanche of the surface layer of the disc. To analyse such a mechanism, the radiation–hydrodynamical equations are solved, including the effects of the radiation drag force as well as the radiation flux force. As a result, it is found that the mass accretion rate owing to the radiative avalanche is given by M ˙ ( r )= η ( L */ c 2)( r / R )2 (Δ R / R )(1 −  e −τ) at radius r , where the efficiency η ranges from 0.2 up to 1, L * and R are respectively the bolometric luminosity and the radius of the starburst ring, Δ R is the extent of the emission regions, and τ is the face-on optical depth of the disc. In an optically thick regime, the rate depends upon neither the optical depth nor the surface mass density distribution of the disc. The present radiatively driven mass accretion may provide a physical mechanism which enables mass accretion from 100-pc scales down to ∼ parsec scales, and it may eventually be linked to advection-dominated viscous accretion on to a massive black hole. The radiation–hydrodynamical and self-gravitational instabilities of the disc are briefly discussed. In particular, the radiative acceleration possibly builds up a dusty wall, which 'shades' the nucleus in edge-on views. This provides another version of the model for the formation of an obscuring torus.  相似文献   

5.
In this paper we study a particular four-body problem: three bodies revolve around their center of mass in circular orbits under the influence of their mutual gravitational attraction, while a fourth body moves in the plane defined by the three bodies but non influencing their motion. The linear stability of the eight equilibrium points is studied, and it is found that it depends on the values of the masses.  相似文献   

6.
Several families of the planar general three-body problem for fixed values of the three masses are found, in a rotating frame of reference, where the mass of two of the bodies is small compared to the mass of the third body. These families were obtained by the continuation of a degenerate family of periodic orbits of three bodies where two of the bodies have zero masses and describe circular orbits around a third body with finite mass, in the same direction.The above families represent planetary systems with the body with the large mass representing the Sun and the two small bodies representing two planets or comets. One section of a family is shown to represent the Jupiter family of comets and also a model for the Sun-Jupiter-Saturn system is found.The stability analysis revealed that stability exists for small masses and small eccentricities of the two planets. Planetary systems with relatively large masses and eccentricities are proved to be unstable. In particular, the Jupiter family of comets, for small masses of the two small bodies, and the Sun-Jupiter-Saturn system are proved to be stable. Also, it was shown that resonances are not necessarily associated with instabilities.  相似文献   

7.
Binary systems showing both apsidal motion and light travel time (LTT) effects which cause orbital period changes in close binaries were studied. 15 triple systems showing apsidal motion were found by searching the literature, and a table including the important parameters of these systems was constructed. Six of the systems given in this table were selected and observed photometrically. Existence of both apsidal motion and LTT effects in all selected systems was investigated by means of the analysis of their eclipse times. The mean observed internal structure constants,  log = k 2,obs  , and contributions to the apsidal motion from the theory of General Relativity and the third/fourth bodies were calculated. The masses of the third/fourth bodies and some characteristics of their orbits were also calculated.  相似文献   

8.
The dynamical evolution of triple systems with equal and unequal-mass components and different initial velocities is studied. It is shown that, in general, the statistical results for the planar and three-dimensional triple systems do not differ significantly. Most (about 85%) of the systems disrupt; the escape of one component occurs after a triple approach of the components. In a system with unequal masses, the escaping body usually has the smallest mass. A small fraction (about 15%) of stable or long-lived systems is formed if the angular momentum is non-zero. Averages, distributions and coefficients of correlations of evolutionary characteristics are presented: the life-time, angular momentum, numbers of wide and close triple approaches of bodies, relative energy of escapers, minimum perimeter during the last triple approach resulting in escape, elements of orbits of the final binary and escaper.  相似文献   

9.
In the general three-body problem, in a rotating frame of reference, a symmetric periodic solution with a binary collision is determined by the abscissa of one body and the energy of the system. For different values of the masses of the three bodies, the symmetric periodic collision orbits form a two-parametric family. In the case of equal masses of the two bodies and small mass of the third body, we found several symmetric periodic collision orbits similar to the corresponding orbits in the restricted three-body problem. Starting with one symmetric periodic collision orbit we obtained two families of such orbits. Also starting with one collision orbit in the Sun-Jupiter-Saturn system we obtained, for a constant value of the mass ratio of two bodies, a family of symmetric periodic collision orbits.  相似文献   

10.
This article deals with the region of motion in the Sitnikov four-body problem where three bodies (called primaries) of equal masses fixed at the vertices of an equilateral triangle. Fourth mass which is finite confined to moves only along a line perpendicular to the instantaneous plane of the motions of the primaries. Contrary to the Sitnikov problem with one massless body the primaries are moving in non-Keplerian orbits about their centre of mass. It is investigated that for very small range of energy h the motion is possible only in small region of phase space. Condition of bounded motions has been derived. We have explored the structure of phase space with the help of properly chosen surfaces of section. Poincarè surfaces of section for the energy range ?0.480≤h≤?0.345 have been computed. We have chosen the plane (q 1,p 1) as surface of section, with q 1 is the distance of a primary from the centre of mass. We plot the respective points when the fourth body crosses the plane q 2=0. For low energy the central fixed point is stable but for higher value of energy splits in to an unstable and two stable fixed points. The central unstable fixed point once again splits for higher energy into a stable and three unstable fixed points. It is found that at h=?0.345 the whole phase space is filled with chaotic orbits.  相似文献   

11.
We study the regions of finite motions in the vicinity of three simple stable periodic orbits in the general problem of three equal-mass bodies with a zero angular momentum. Their distinctive feature is that one of the moving bodies periodically passes through the center of mass of the triple system. We consider the dynamical evolution of plane nonrotating triple systems for which the initial conditions are specified in such a way that one of the bodies is located at the center of mass of the triple system. The initial conditions can then be specified by three parameters: the virial coefficient k and the two angles, φ1 and φ2, that characterize the orientation of the velocity vectors for the bodies. We scanned the region of variation in these parameters k∈(0, 1); φ1, φ2∈(0, π) at steps of δk=0.01; δφ1=δφ2=1° and identified the regions of finite motions surrounding the periodic orbits. These regions are isolated from one another in the space of parameters (k, φ1, φ2). There are bridges that correspond to unstable orbits with long lifetimes between the regions. During the evolution of these metastable systems, the phase trajectory can “stick” to the vicinity of one of the periodic orbits or move from one vicinity to another. The evolution of metastable systems ends with their breakup.  相似文献   

12.
In this article we treat the 'Extended Sitnikov Problem' where three bodies of equal masses stay always in the Sitnikov configuration. One of the bodies is confined to a motion perpendicular to the instantaneous plane of motion of the two other bodies (called the primaries), which are always equally far away from the barycenter of the system (and from the third body). In contrary to the Sitnikov Problem with one mass less body the primaries are not moving on Keplerian orbits. After a qualitative analysis of possible motions in the 'Extended Sitnikov Problem' we explore the structure of phase space with the aid of properly chosen surfaces of section. It turns out that for very small energies H the motion is possible only in small region of phase space and only thin layers of chaos appear in this region of mostly regular motion. We have chosen the plane ( ) as surface of section, where r is the distance between the primaries; we plot the respective points when the three bodies are 'aligned'. The fixed point which corresponds to the 1 : 2 resonant orbit between the primaries' period and the period of motion of the third mass is in the middle of the region of motion. For low energies this fixed point is stable, then for an increased value of the energy splits into an unstable and two stable fixed points. The unstable fixed point splits again for larger energies into a stable and two unstable ones. For energies close toH = 0 the stable center splits one more time into an unstable and two stable ones. With increasing energy more and more of the phase space is filled with chaotic orbits with very long intermediate time intervals in between two crossings of the surface of section. We also checked the rotation numbers for some specific orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In this paper, families of simple symmetric and non-symmetric periodic orbits in the restricted four-body problem are presented. Three bodies of masses m 1, m 2 and m 3 (primaries) lie always at the apices of an equilateral triangle, while each moves in circle about the center of mass of the system fixed at the origin of the coordinate system. A massless fourth body is moving under the Newtonian gravitational attraction of the primaries. The fourth body does not affect the motion of the three bodies. We investigate the evolution of these families and we study their linear stability in three cases, i.e. when the three primary bodies are equal, when two primaries are equal and finally when we have three unequal masses. Series, with respect to the mass m 3, of critical periodic orbits as well as horizontal and vertical-critical periodic orbits of each family and in any case of the mass parameters are also calculated.  相似文献   

14.
In this paper the existence of families of symmetric periodic orbits in the rectilinear three body problem with the middle mass much larger than the masses on the outside is rigorously established. A number of these families are continued numerically and their stability properties as orbits of the planar general problem of three bodies are studied.  相似文献   

15.
We describe a one-parameter family of periodic orbits in the planar problem of three bodies with equal masses. This family begins with Schubart's (1956) rectilinear orbit and ends in retrograde revolution, i.e. a hierarchy of two binaries rotating in opposite directions. The first-order stability of the orbits in the plane is also computed. Orbits of the retrograde revolution type are stable; more unexpectedly, orbits of the interplay type at the other end of the family are also stable. This indicates the possible existence of triple stars with a motion entirely different from the usual hierarchical arrangement.  相似文献   

16.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

17.
The 2/1 resonant dynamics of a two-planet planar system is studied within the framework of the three-body problem by computing families of periodic orbits and their linear stability. The continuation of resonant periodic orbits from the restricted to the general problem is studied in a systematic way. Starting from the Keplerian unperturbed system, we obtain the resonant families of the circular restricted problem. Then, we find all the families of the resonant elliptic restricted three-body problem, which bifurcate from the circular model. All these families are continued to the general three-body problem, and in this way we can obtain a global picture of all the families of periodic orbits of a two-planet resonant system. The parametric continuation, within the framework of the general problem, takes place by varying the planetary mass ratio ρ. We obtain bifurcations which are caused either due to collisions of the families in the space of initial conditions or due to the vanishing of bifurcation points. Our study refers to the whole range of planetary mass ratio values  [ρ∈ (0, ∞)]  and, therefore we include the passage from external to internal resonances. Thus, we can obtain all possible stable configurations in a systematic way. As an application, we consider the dynamics of four known planetary systems at the 2/1 resonance and we examine if they are associated with a stable periodic orbit.  相似文献   

18.
The stability of Trojan type orbits around Neptune is studied. As the first part of our investigation, we present in this paper a global view of the stability of Trojans on inclined orbits. Using the frequency analysis method based on the fast Fourier transform technique, we construct high-resolution dynamical maps on the plane of initial semimajor axis a 0 versus inclination i 0. These maps show three most stable regions, with i 0 in the range of  (0°, 12°), (22°, 36°)  and  (51°, 59°),  respectively, where the Trojans are most probably expected to be found. The similarity between the maps for the leading and trailing triangular Lagrange points L 4 and L 5 confirms the dynamical symmetry between these two points. By computing the power spectrum and the proper frequencies of the Trojan motion, we figure out the mechanisms that trigger chaos in the motion. The Kozai resonance found at high inclination varies the eccentricity and inclination of orbits, while the  ν8  secular resonance around   i 0∼ 44°  pumps up the eccentricity. Both mechanisms lead to eccentric orbits and encounters with Uranus that introduce strong perturbation and drive the objects away from the Trojan like orbits. This explains the clearance of Trojan at high inclination  (>60°)  and an unstable gap around  44°  on the dynamical map. An empirical theory is derived from the numerical results, with which the main secular resonances are located on the initial plane of  ( a 0, i 0)  . The fine structures in the dynamical maps can be explained by these secular resonances.  相似文献   

19.
Abstract— The main asteroid belt has lost >99.9% of its solid mass since the time at which the planets were forming, according to models for the protoplanetary nebula. Here we show that the primordial asteroid belt could have been cleared efficiently if much of the original mass accreted to form planetsized bodies, which were capable of perturbing one another into unstable orbits. We provide results from 25 N‐body integrations of up to 200 planets in the asteroid belt, with individual masses in the range 0.017–0.33 Earth masses. In the simulations, these bodies undergo repeated close encounters which scatter one another into unstable resonances with the giant planets, leading to collision with the Sun or ejection from the solar system. In response, the giant planets' orbits migrate radially and become more circular. This reduces the size of the main‐belt resonances and the clearing rate, although clearing continues. If ~3 Earth masses of material was removed from the belt this way, Jupiter and Saturn would initially have had orbital eccentricities almost twice their current values. Such orbits would have made Jupiter and Saturn 10–100x more effective at clearing material from the belt than they are on their current orbits. The time required to remove 90% of the initial mass from the belt depends sensitively on the giant planets' orbits, and weakly on the masses of the asteroidal planets. 18 of the 25 simulations end with no planets left in the belt, and the clearing takes up to several hundred million years. Typically, the last one or two asteroidal planets are removed by interactions with planets in the terrestrial region  相似文献   

20.
Several recent studies have shown that the star cluster initial mass function (CIMF) can be well approximated by a power law, with indications for a steepening or truncation at high masses. This contribution considers the evolution of such a mass function due to cluster disruption, with emphasis on the part of the mass function that is observable in the first ∼1 Gyr. A Schechter type function is used for the CIMF, with a power-law index of −2 at low masses and an exponential truncation at M *. Cluster disruption due to the tidal field of the host galaxy and encounters with giant molecular clouds flattens the low-mass end of the mass function, but there is always a part of the 'evolved Schechter function' that can be approximated by a power law with index −2. The mass range for which this holds depends on age, τ, and shifts to higher masses roughly as  τ0.6  . Mean cluster masses derived from luminosity-limited samples increase with age very similarly due to the evolutionary fading of clusters. Empirical mass functions are, therefore, approximately power laws with index −2, or slightly steeper, at all ages. The results are illustrated by an application to the star cluster population of the interacting galaxy M51, which can be well described by a model with   M *= (1.9 ± 0.5) × 105 M  and a short (mass-dependent) disruption time destroying M * clusters in roughly a Gyr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号