首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.  相似文献   

2.
This study contributes to the quality assessment of atmospherically corrected Landsat surface reflectance data that are routinely generated by the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). This dataset, named Landsat Surface Reflectance Climate Data Record (Landsat CDR), is available at global scale and offers unprecedented opportunities to land monitoring and management services that require atmospherically corrected Earth observation (EO) data. Our assessment is based on the comparison of the Landsat CDR data against a set of Landsat and DEIMOS-1 images processed to a high degree of accuracy using an industry-standard atmospheric correction algorithm (ATCOR-2). The software package has been used for many years and its correction procedures can be considered consolidated and well-established. The dataset of Landsat and DEIMOS-1 images was acquired over a semi-arid agricultural area located in Lower Austria and was independently corrected by using a manual fine-tuning of ATCOR-2 parameters to reach the highest possible accuracy. Results show a very good correspondence of the surface reflectance in each of the six reflective spectral channels as well as for the NDVI (Normalized Difference Vegetation Index). An additional comparison against a NDVI time series from MODIS revealed also a good correspondence. Coefficients of determination (R2) between the two multi-year and multi-seasonal Landsat/DEIMOS datasets range between 0.91 (blue band) and 0.98 (nIR, SWIR-1 and SWIR-2). The results obtained for our semi-arid test site in Austria confirm previous findings and suggest that automatic atmospheric procedures, such as the one implemented by LEDAPS are accurate enough to be used in land monitoring services that require consistent multi-temporal surface reflectance data.  相似文献   

3.
4.
A main limitation of pixel-based vegetation indices or reflectance values for estimating above-ground biomass is that they do not consider the mixed spectral components on the earth's surface covered by a pixel. In this research, we decomposed mixed reflectance in each pixel before developing models to achieve higher accuracy in above-ground biomass estimation. Spectral mixture analysis was applied to decompose the mixed spectral components of Landsat-7 ETM+ imagery into fractional images. Afterwards, regression models were developed by integrating training data and fraction images. The results showed that the spectral mixture analysis improved the accuracy of biomass estimation of Dipterocarp forests. When applied to the independent validation data set, the model based on the vegetation fraction reduced 5–16% the root mean square error compared to the models using a single band 4 or 5, multiple bands 4, 5, 7 and all non-thermal bands of Landsat ETM+.  相似文献   

5.
为分析高分一号WFV传感器16 m遥感影像在水质反演方面的能力,本文选取南四湖为研究区,以高分一号卫星影像与Landsat-8卫星OLI影像为数据源,结合地面同步实测水体浊度数据,建立反演水体浊度的原始光谱反射率模型、归一化反射率模型和波段比值模型,并对各模型进行精度评价,分别比较两个传感器在浊度反演能力方面的差异。结果表明:利用高分一号WFV 16m遥感影像进行水质反演具有较高的精度,且具备更高的空间分辨率和更短的重访周期,可以替代Landsat-8多光谱数据。  相似文献   

6.
Advanced site-specific knowledge of grain protein content of winter wheat from remote sensing data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, remote sensing data were utilized to predict grain protein content. Firstly, the leaf nitrogen content at winter wheat anthesis stage was proved to be significantly correlated with grain protein content (R2 = 0.36), and spectral indices significantly correlated to leaf nitrogen content at anthesis stage were potential indicators for grain protein content. The vegetation index, VIgreen, derived from the canopy spectral reflectance at green and red bands, was significantly correlated to the leaf nitrogen content at anthesis stage, and also highly significantly correlated to the final grain protein content (R2 = 0.46). Secondly, the external conditions, such as irrigation, fertilization and temperature, had important influence on grain quality. Water stress at grain filling stage can increase grain protein content, and leaf water content is closely related to irrigation levels, therefore, the spectral indices correlated to leaf water content can be potential indicators for grain protein content. The spectral reflectance of TM channel 5 derived from canopy spectra or image data at grain filling stage was all significantly correlated to grain protein content (R2 = 0.31 and 0.37, respectively). Finally, not only this study proved the feasibility of using remote sensing data to predict grain protein content, but it also provided a tentative prediction of the grain protein content in Beijing area using the reflectance image of TM channel 5.  相似文献   

7.
To understand the absolute radiometric calibration accuracy of the HJ-A CCD-1 sensors, image from these sensors were compared to nearly simultaneously image from Landsat-7 ETM+ sensors. Although the HJ-A CCD-1 sensor has almost the same wavelength of each central band and band width as Landsat-7 ETM+ sensor, there is slightly difference in spectral response function (SRF). The impacts of SRF difference effects would produce ~2 % uncertainty in predicting reflectance of HJ-A CCD-1 sensor using Landsat-7 ETM+ sensor. The reflectance observed by satellite at top-of-atmosphere generally depends on its’ geometric conditions. The results reveal that the impacts of geometrical conditions would impact on the vicarious cross-calibration accuracy, which should be removed. The performances of cross-calibration are calibrated and validated by four image pairs collected from Yellow River Delta, China, and Qingdao City, China, at four independent times. The results indicate that the HJ-A CCD-1 sensors can be cross calibrated to the Landsat-7 ETM+ sensors to within an accuracy of 3.99 % (denoted by Relative Root Mean Square Error) of each other in all bands except band 4, which has a 6.33 % difference.  相似文献   

8.
通过人工田间诱发不同等级条锈病,在不同生育期测定冬小麦感染条锈病严重度和冠层光谱,采用偏最小二乘(PLS)方法建立了冠层光谱和条锈病严重度的回归模型。结果显示: PLS反演冬小麦条锈病严重度的效果很好,与文献[4]中提出的利用高光谱指数进行反演的结果相比,精度更高; 通过对PLS回归系数的分析,发现叶绿素吸收谷两边(505~550 nm,640~670 nm,680~700 nm)的一阶微分光谱可用于诊断冬小麦条锈病病情,条锈病病害冬小麦在叶绿素吸收谷两边的一阶微分光谱的绝对值会比健康冬小麦的更大。  相似文献   

9.
This work presents the preliminary results of the first field calibration campaign performed in the Atacama Desert, Chile, between the 18 and 22 August 2014, called the Atacama Field Campaign (ATAFIC 2014). In situ measurements were performed in order to spectrally characterize the surface reflectance spectra between 0.3 and 2.5?µm, radiometric temperature (8.0–14.0?µm) and atmospheric measurements. A soil sample was collected and analyzed using Fourier Transform Infrared Spectroscopy and X-Ray Diffraction techniques to characterize the surface reflectance spectra and mineralogical composition, respectively. ASTER land surface emissivity in addition to GOES, MODIS and Landsat-8 land surface temperature (LST) were also used. Results showed that the spectral features of the Atacama soil and the characteristics of this geographical zone, which is featured as the most hyper-arid and cloudless place in the world, make this area a potential target for surface reflectance characterization. Day and night LST comparison between field and remote sensing data are lower than 2?K and the Root Mean Square Error for land surface emissivity is close to 2%. This work opens the possibilities to consider the Atacama Desert as a reference target for calibration and validation activities for earth observation missions’ purposes.  相似文献   

10.
Spectral reflectance can be used to assess large-scale performances of plants in the field based on plant nutrient balance as well as composition of defence compounds. However, plant chemical composition is known to vary with season – due to its phenology – and it may even depend on the succession stage of its habitat. Here we investigate (i) how spectral reflectance could be used to discriminate successional and phenological stages of Jacobaea vulgaris in both leaf and flower organs and (ii) if chemical content estimation by reflectance is flower or leaf dependent.We used J. vulgaris, which is a natural outbreak plant species on abandoned arable fields in north-western Europe and studied this species in a chronosequence representing successional development during time since abandonment. The chemical content and reflectance between 400 and 2500 nm wavelengths of flowers and leaves were measured throughout the season in fields of different successional ages. The data were analyzed with multivariate statistics for temporal discrimination and estimation of chemical contents in both leaf and flower organs.Two main effects were revealed by spectral reflectance measurements: (i) both flower and leaf spectra show successional and seasonal changes, but the pattern is complex and organ specific (ii) flower head pyrrolizidine alkaloids, which are involved in plant defence against herbivores, can be detected through hyperspectral reflectance.We conclude that spectral reflectance of both leaves and flowers can provide information on plant performance during season and successional stages. As a result, remote sensing studies of plant performance in complex field situations will benefit from considering hyperspectral reflectance of different plant organs. This approach may enable more detailed studies on the link between spectral information and plant defence dynamics both aboveground and belowground.  相似文献   

11.
We used a full remote sensing-based approach to assess plant species diversity in large and inaccessible areas affected by Lantana camara L., a common invasive species within the deciduous forests of Western Himalayan region of India, using spectral heterogeneity information extracted from optical data. The spread of L. camara was precisely mapped by Pléiades 1A data, followed by comparing Pléiades 1A, RapidEye and Landsat-8 OLI – assessed plant species diversities in invaded areas. The single plant species analysis was improved by Pléiades 1A-based diversity analysis, and higher species diversity values were observed for mixed vegetation cover. Furthermore, lower Coefficient of Variation and Renyi diversity values were observed where L. camara was the only species, while higher variations were observed in areas with a mixed spectral reflectance. This study was concluded to add a crucial baseline to the previous studies on remote sensing-based solutions for rapid estimation of biodiversity attributes.  相似文献   

12.
利用多时相的高光谱航空图像监测冬小麦条锈病   总被引:31,自引:1,他引:31  
冬小麦发生锈病 ,叶绿素被大量破坏 ,水分蒸滕量大大增加 ,叶片细胞大小、形态、叶片结构发生了改变 ,从而改变了叶片和冠层的光学特性 ,使得遥感探测与评价成为可能。利用多时相的高光谱航空飞行图像数据 ,了解、分析和发现条锈病病害对作物光谱的影响及其光谱特征 ;设计了病害光谱指数 ,成功地监测了冬小麦条锈病病害程度与范围。对比 3个生育期的条锈病与正常生长冬小麦的PHI图像光谱及光谱特征 ,发现 :5 6 0— 6 70nm黄边、红谷波段 ,条锈病病害冬小麦的冠层反射率高于正常生长的冬小麦光谱反射率 ;近红外波段 ,条锈病病害的冠层反射率低于正常生长的冬小麦光谱反射率 ;条锈病冬小麦冠层光谱红谷吸收深度和绿峰的反射峰高度都会减小  相似文献   

13.
The spectral reflectance characteristics of different types of natural and anthropogenic salt-affected soils have been studied under field conditions. The spectral reflectance value for non-saline and all types of salt-affected soils was maximum in near infra red region (800–1000 nm). The natural salt-affected soils having surface salt encrustation showed highest reflectance value followed by the sodic soils (formed due to high residual sodium carbonate water irrigation) natural saline soils and saline soils due to saline water irrigation. Soil texture, pH, CaC03 and organic matter together accounted for 29.6% variation in the maximum reflectance percentage value out of which only pH accounted for more than half (14.2% variation).  相似文献   

14.
敦煌场地CBERS-02 CCD传感器在轨绝对辐射定标研究   总被引:5,自引:1,他引:5  
对资源一号卫星02星(CBERS-02),为深入其定量化分析,定期在敦煌绝对辐射校正场地进行了地面同步测量,开展了更新在轨绝对辐射定标研究。另外,运用地表反射率和大气光学特性参量数据,计算出CBERS-02CCD传感器4个波段的绝对辐射标定系数。同时,利用2004年8月25目的Landsat-5 TM图像数据对CBERS-02 CCD传感器的辐射特性进行交叉定标,验证分析了CBERS-02 CCD传感器场地绝对辐射定标的基本特性及其可靠性。另外,为CBERS后续星的传感器改进,提供了分析参量。  相似文献   

15.
To understand the mechanism of wetland cover change with both moderate spatial resolution and high temporal frequency, this research evaluates the applicability of a spatiotemporal reflectance blending model in the Poyang Lake area, China, using 9 time-series Landsat-5 Thematic Mapper images and 18 time-series Terra Moderate Resolution Imaging Spectroradiometer images acquired between July 2004 and November 2005. The customized blending model was developed based on the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). Reflectance of the moderate-resolution image pixels on the target dates can be predicted more accurately by the proposed customized model than the original ESTARFM. Water level on the input image acquisition dates strongly affected the accuracy of the blended reflectance. It was found that either of the image sets used as prior or posterior inputs are required when the difference of water level between the prior or posterior date and target date at Poyang Hydrological Station is <2.68 m to achieve blending accuracy with a mean average absolute difference of 4% between the observed and blended reflectance in all spectral bands.  相似文献   

16.
The remote sensing of Case 2 water has been far less successful than that of Case 1 water, due mainly to the complex interactions among optically active substances (e.g., phytoplankton, suspended sediments, colored dissolved organic matter, and water) in the former. To address this problem, we developed a spectral decomposition algorithm (SDA), based on a spectral linear mixture modeling approach. Through a tank experiment, we found that the SDA-based models were superior to conventional empirical models (e.g. using single band, band ratio, or arithmetic calculation of band) for accurate estimates of water quality parameters. In this paper, we develop a method for applying the SDA to Landsat-5 TM data on Lake Kasumigaura, a eutrophic lake in Japan characterized by high concentrations of suspended sediment, for mapping chlorophyll-a (Chl-a) and non-phytoplankton suspended sediment (NPSS) distributions. The results show that the SDA-based estimation model can be obtained by a tank experiment. Moreover, by combining this estimation model with satellite-SRSs (standard reflectance spectra: i.e., spectral end-members) derived from bio-optical modeling, we can directly apply the model to a satellite image. The same SDA-based estimation model for Chl-a concentration was applied to two Landsat-5 TM images, one acquired in April 1994 and the other in February 2006. The average Chl-a estimation error between the two was 9.9%, a result that indicates the potential robustness of the SDA-based estimation model. The average estimation error of NPSS concentration from the 2006 Landsat-5 TM image was 15.9%. The key point for successfully applying the SDA-based estimation model to satellite data is the method used to obtain a suitable satellite-SRS for each end-member.  相似文献   

17.
A global operational land imager (GOLI) Landsat-8 daytime active fire detection algorithm is presented. It utilizes established contextual active fire detection approaches but takes advantage of the significant increase in fire reflectance in Landsat-8 band 7 (2.20?μm) relative to band 4 (0.66?μm). The detection thresholds are fixed and based on a statistical examination of 39 million non-burning Landsat-8 pixels. Multi-temporal tests based on band 7 reflectance and relative changes in normalized difference vegetation index in the previous six months are used to reduce commissions errors. The probabilities of active fire detection for the GOLI and two recent Landsat-8 active fire detection algorithms are simulated to provide insights into their performance with respect to the fire size and temperature. The algorithms are applied to 11 Landsat-8 images that encompass a range of burning conditions and environments. Commission and omission errors are assessed by visual interpretation of detected active fire locations and by examination of the Landsat-8 images and higher spatial resolution Google Earth imagery. The GOLI algorithm has lower omission and comparable commission errors than the recent Landsat-8 active fire detection algorithms. The GOLI algorithm has demonstrable potential for global application and is suitable for implementation with other Landsat-like reflective wavelength sensors.  相似文献   

18.
基于遥感的龙海市水田专题信息提取方法研究   总被引:3,自引:0,他引:3  
以Landsat-7ETM+图像为基本资料,采用人机交互式非监督分类法、最大似然法和谱间关系阈值法分别提取龙海市水田信息。研究表明,3种方法各有优缺点,后2种方法提取精度较高,其中,谱间关系阈值法在分析不同类型水体与其背景地物光谱特征差异的基础上,挖掘谱间结构,总结各地物相分离的规律,因此提取效果最好。  相似文献   

19.
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question “what is the prospect of using independent reference reflectance spectra for image classification”, while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of “non-existence of characteristic reflectance spectral signatures for vegetation”, results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.  相似文献   

20.
Soil salinity is one of the most important problems affecting Egyptian soils. It is caused by: (1) a rising water table, or (2) the misuse of the irrigation water. Two Landsat images acquired in 1987 and 1999 were used to detect and monitor soil salinity over the Siwa Oasis, Western Desert, Egypt. DN values of these images were converted to percent reflectance. Inspection of Landsat images revealed that saline soils had an overall higher spectral reflectance in all spectral bands except the two MIR bands. The reflectance curves of saline soils show a strong relationship between the existence of salts in the soil and the difference between bands 4 and 5. A salinity index (SI) was calculated for both images. The majority of pixels in the 1987 image have salinity index values ranging between 0 and 0.2, whereas the values in the 1999 image histogram ranged between 0 and 0.4. These values indicate that soil salinity has increased twofold during the 12 years spanning the imagery. These values show a strong correlation with vegetation index images, in which the 1999 vegetation index image reveals the appearance of surface water lakes formed due to a rising water table. This study presents a model for the identification of soil salinity using remote sensing measurements in conjunction with piezometer readings taken during the time of image acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号