首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensive humite‐bearing marble horizon within a supracrustal sequence at Ambasamudram, southern India, was studied using petrological and stable isotopic techniques to define its metamorphic history and fluid characteristics. At peak metamorphic temperatures of 775±73°C, based on calcite‐graphite carbon isotope thermometry, the mineral assemblages suggest layer‐by‐layer control of fluid compositions. Clinohumite + calcite‐bearing assemblages suggest XCO2 < 0.4 (at 700°C and 5 kbar), calcite + forsterite + K‐feldspar‐bearing assemblages suggest XCO2>0.9 (at 790°C); and local wollastonite + scapolite + grossular‐bearing zones formed at XCO2 of c. 0.3. Retrograde reaction textures such as scapolite + quartz symplectites after feldspar and calcite and replacement of dolomite + diopside or tremolite+dolomite after calcite+forsterite or calcite+clinohumite are indicative of retrogression under high XCO2 conditions. Calcite preserves late Proterozoic carbon and oxygen isotopic signatures and the marble lacks evidence for extensive retrograde fluid infiltration, while during prograde metamorphism the possible infiltration of aqueous fluids did not produce significant isotopic resetting. Isotopic zonation of calcite and graphite grains was likely produced by localized CO2 fluid infiltration during retrogression. Contrary to the widespread occurrence of humite‐marbles related to retrograde aqueous fluid infiltration, the Ambasamudram humite‐marbles record a prograde‐to‐peak metamorphic humite formation and retrogression under conditions of low XH2O.  相似文献   

2.
This study investigates marbles and calcsilicates in Central Dronning Maud Land (CDML), East Antarctica. The paleogeographic positioning of CDML as part of Gondwana is still unclear; however, rock types, mineral assemblages, textures and P–T conditions observed in this study are remarkably similar to the Kerala Khondalite Belt in India. The CDML marbles and calcsilicates experienced a Pan-African granulite facies metamorphism at c. 570 Ma and an amphibolite facies retrogression at c. 520 Ma. The highest grade assemblage in marbles is forsterite+spinel+calcite+dolomite, in calcsilicates the assemblages are diopside+spinel, diopside+garnet, scapolite+wollastonite+clinopyroxene±quartz, scapolite±anorthite±calcite+clinopyroxene+wollastonite. These assemblages constrain the peak metamorphic conditions to 830±20 °C, 6.8±0.5 kbar and X CO2>0.46. During retrogression, highly fluoric humite-group minerals (humite, clinohumite, chondrodite) replaced forsterite, and garnet rims formed at the expense of scapolite during reactions with wollastonite, calcite or clinopyroxene but without involvement of anorthite. Metamorphic conditions were about 650 °C, 4.5±0.7 kbar, 0.2< X CO2fluid<0.36, and the co-existence of garnet, clinopyroxene, wollastonite and quartz constrains fO2 to FMQ-1.5 log units. Mineral textures indicate a very limited influx of H2O-rich fluid during amphibolite facies retrogression and point to significant variations of fluid composition in mm-sized areas of the rock. Gypsum was observed in two samples; it probably replaced metamorphic anhydrite which appears to have formed under amphibolite facies conditions. The observed extensive anorogenic magmatism (anorthosites, A-type granitoids) and the character of metamorphism between 610 and 510 Ma suggest that the crustal thermal structure was characterized by a long-lived (50–100 Ma) rise of the crustal geotherm probably caused by magmatic underplating.  相似文献   

3.
The natural occurrence of critical assemblages among the phases clinohumite, calcite, dolomite, tremolite, forsterite, diopside, chlorite, and spinel in metamorphosed impure limestones, together with experimental and thermodynamic data, permits the calculation of phase equilibria governing the stability of clinohumite in terms of the variables P, T, and composition of a CO2-H2O-HF fluid. Equilibrium constant expressions are given for 23 equilibria that describe the stable phase relations between the above phases. Pure OH-clinohumite is considered to be metastable at relatively low pressures. The occurrence of clinohumite in natural marbles is the result of nonideal fluorine substitution which increases the stability of clinohumite. The stability field for clinohumite +calcite, governed primarily by the equilibrium 4forsterite+dolomite+H2O = clinohumite+calcite +CO2, expands to more CO2-rich fluid compositions with increasing fluorine contents and decreasing total pressure. The F/(F+OH) ratio of clinohumite coexisting with calcite, dolomite, and forsterite is a sensitive indicator of the composition of the mixedvolatile fluid phase. The thermodynamic model is in good agreement with observed phase relations and can be used to gain useful information concerning the P-T-X fluid conditions responsible for the formation of clinohumite.  相似文献   

4.
Experiments reproducing the development of bimetasomatic zoning in the CaO-MgO-SiO2-H2O-CO2 system were conducted at elevated P-T parameters with the use of samples of naturally occurring quartzdolomite and calcite-serpentinite rocks. In order to maintain mass transfer exclusively via the diffusion-controlled mechanism, we used the method of the ensured compaction of the cylindrical sample surface with a thin-walled gold tube. In the course of the experiments, a single diopside zone ~2.5 × 10?5 m thick was obtained at the quartz-dolomite interface at T = 600°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.5 for 25–40 days and a succession of metasomatic zones at T = 750°C, $P_{H_2 O + CO_2 } $ = 300 MPa, and $X_{CO_2 } $ = 0.4 for 48 days. The metasomatic zones were as follows (listed in order from quartz to dolomite): wollastonite ‖ diopside ‖ tremolite ‖ calcite + forsterite; with the average width of the diopside zone equal to ~1.3 × 10?5 m and the analogous part of the wollastonite zone equal to ~2.6 × 10?5 m. Two zones (listed in order from calcite to serpentine) diopside and diopside-forsterite (the average widths of these zones were ~6 × 10?4 and ~8 × 10?4 m, respectively) were determined to develop at contact between serpentine and calcite during experiments that lasted 124 days at T = 500°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.2–0.4. In the former and latter situations, the growth rate of the zoning ranged between 3.1 × 10?12 and 1.2 × 10?11 m/s and between 5.6 × 10?11 and 7.5 × 10?11 m/s, respectively. The higher growth rate in the latter case can be explained by the higher water mole fraction in the fluid, with this water released during serpentinite decomposition in the experiments. The development of the only diopside zone in the experiments modeling the interaction of quartz and dolomite at T = 600–650°C and $P_{H_2 O + CO_2 } $ = 200 MPa is in conflict with theoretical considerations underlain by the Korzhinskii-Fisher-Joesten model. The interaction of quartz and dolomite in the CaO-MgO-SiO2-CO2-H2O system at the P-T- $X_{CO_2 } $ parameters specified above should be attended by the origin of a number of reaction zones consisting of various proportions of talc, forsterite, tremolite, diopside, and calcite. The saturation of the fluid with respect to these minerals was likely not reached, and this resulted in the degeneration of the respective stability fields in the succession of zones. Conceivably, this was related to the insufficient rates of quartz and dolomite dissolution and the relatively low diffusion rates of the dissolved species in the low-permeable medium. In the experiments with interacting calcite and serpentine, the zoning calcite ‖ diopside ‖ diopside + forsterite ‖ serpentine developed in its complete form, in agreement with the theory. Equilibrium was likely achieved in these experiments due to the higher diffusion coefficients.  相似文献   

5.
This study presents calcite–graphite carbon isotope fractionations for 32 samples from marble in the northern Elzevir terrane of the Central Metasedimentary Belt, Grenville Province, southern Ontario, Canada. These results are compared with temperatures calculated by calcite–dolomite thermometry (15 samples), garnet–biotite thermometry (four samples) and garnet–hornblende thermometry (three samples). Δcal‐gr values vary regularly across the area from >6.5‰ in the south to 4.0‰ in the north, which corresponds to temperatures of 525 °C in the south to 650 °C in the north. Previous empirical calibration of the calcite–graphite thermometer agrees very well with calcite–dolomite, garnet–biotite and garnet–hornblende thermometry, whereas, theoretical calibrations compare less well with the independent thermometry. Isograds in marble based on the reactions rutile + calcite + quartz =titanite and tremolite + calcite + quartz = diopside, span temperatures of 525–600 °C and are consistent with calculated temperature–X(CO2) relations. Results of this study compare favourably with large‐scale regional isotherms, however, local variation is greater than that revealed by large‐scale sampling strategies. It remains unclear whether the temperature–Δcal‐gr relationship observed in natural materials below 650 °C represents equilibrium fractionations or not, but the regularity and consistency apparent in this study demonstrate its utility for thermometry in amphibolite facies marble.  相似文献   

6.
Summary The intrusion of the Lower Permian Los Santos-Valdelacasa granitoids in the Los Santos area caused contact metamorphism of Later Vendian-Lower Cambrian metasediments. High grade mineral assemblages are confined to a 7 km wide contact aureole. Contact metamorphism was accompanied by intense metasomatism and development of skarns, and it generated the following mineral assemblages: diopside, forsterite, phlogopite (±clintonite) and humites and spinel-bearing assemblages or diopside, grossular, vesuvianite ± wollastonite in the marbles, depending on the bulk rock composition. Cordierite, K-feldspar, andalusite and, locally, sillimanite appear in the metapelitic rocks. Mineral assemblages of marbles and hornfelses indicate pressure conditions ranging from 0.2 to 0.25 GPa and maximum temperatures between 630 and 640 °C. 13C and 18O depletions in calcite marbles are consistent with hydrothermal fluid–rock interaction during metamorphism. Calcites are depleted in both 18O (δ18O = 12.74‰) and 13C (δ13C = −5.47‰) relative to dolomite of unmetamorphosed dolostone (δ18O = 20.79‰ and δ13C = −1.52‰). The δ13C variation can be interpreted in terms of Rayleigh distillation during continuous CO2 fluid removal from the carbonates. The δ18O values reflect hydrothermal exchange with an externally derived fluid. Microthermometric analyses of fluid inclusions from vesuvianite indicate that the fluid was water dominated with minor contents of CO2 (±CH4 ± N2) suggesting a metamorphic origin. Fluorine-bearing minerals such as chondrodite, norbergite and F-rich phlogopite indicate that contact metamorphism was accompanied by fluorine metasomatism. Metasomatism was more intense in the inner-central portion of the contact aureole, where access to fluids was extensive. The irregular geometry of the contact with small aplitic intrusives between the metasediments and the Variscan granitoids probably served as pathways for fluid circulation.  相似文献   

7.
The occurrence of talc and tremolite in a temperature gradient was investigated in siliceous calcite-dolomite sediments exposed along a strip in the southeastern part of the Damara Orogen. Five bivariant reactions may lead to the formation of talc and tremolite:
  1. 3 dolomite+4 quartz+1 H2O ? 1 talc+3 calcite+3 CO2
  2. 5 talc+6 calcite+4 quartz ? 1 tremolite+6 CO2+2 H2O
  3. 2 talc+3 calcite ? 1 tremolite+1 dolomite+1 CO2+1 H2O
  4. 5 dolomite+8 quartz+1 H2O ? 1 tremolite+3 calcite+7 CO2
  5. 2 dolomite+1 talc+4 quartz ? 1 tremolite+4 CO2.
The common paragenesis of four mineral assemblages tc+cc+dol+qtz1 and tre+tc+ cc+qtz with increasing temperature over an extended area show that the reactions must have taken place along the equilibrium curve or when fluid pressure is not constant along the equilibrium plane of reactions (1) or (2). The described occurrence of the five mineral assemblage tre+tc+cc+dol+qtz can be stable only on the isobaric intersection point, or when P f is variable on the univariant intersection curve of the equilibrium planes of all five reactions. The genetic relations of the described parageneses are illustrated with the help of a phase diagram. Minimum P-T conditions which prevailed during metamorphism in this part of the Damara Orogen have been estimated to be about 590° C and 5 kb.  相似文献   

8.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   

9.
During an experimental investigation of the metamorphism of siliceous dolomites the equilibrium data of the heterogeneous bivariant reaction 1 $$3{\text{ dolomite + 4 quartz + 1 H}}_{\text{2}} O \rightleftharpoons + 3 calcite + 3 CO_2 $$ were determined for the total fluid pressures of 1,000, 3,000 and 5,000 bars. The equilibrium conditions were found by experiments in which dolomite, quartz and water react to form talc, calcite and CO2, as well as by experiments with reversible reaction direction. Results are shown on the temperature- \(X_{CO_2 } \) -diagram of Fig. 3. The temperature of formation of talc and calcite depends to a considerable extent on the composition of the CO2-H2O-gas phase; this can be read straight off the isobaric (P f =const.) equilibrium curves in Fig. 3. In addition a strong dependence of the equilibrium temperature on the total pressure P f was established (see Fig. 5). At a total gas pressure of 1,000 bars dolomite and quartz can react, according to the composition of the CO2-H2O-gas phase, to talc and calcite over the whole of the temperature range between about 350° and 490° C. This indicates that at low pressures the formation of talc and calcite takes place in the field of the albite-epidote-hornfels facies. At a pressure of 3,000 bars dolomite and quartz are stable up to about 550° C if the fluid phase is rich in carbon dioxide and correspondingly poor in water. Thus, this paragenesis can occur up to the stability field of staurolite [see annotation (5)] if the partial pressure of CO2 is large. At the higher total gas pressure of 5,000 bars dolomite and quartz react even at medium CO2-concentrations only at about 580° C to give talc and calcite. Therefore it is expected that in regional metamorphism at about 5,000 bars pressure or more the paragenesis dolomite plus quartz exists up to and within the stability field of staurolite and reacts only here to form talc and calcite after reaction (1) or tremolite and calcite after the following reaction (2)1: $$5 dolomite + 8 quartz + 1 H_2 O \rightleftharpoons 1 tremolite + 3 calcite + 7 CO_2 $$ . The exact physico-chemical conditions under which dolomite, quartz and water react on the one hand to form talc, calcite and CO2, and on the other hand to form tremolite, calcite and carbon dioxide, will be discussed later when our experimental investigations on the formation of tremolite are completed. First results were already published in a short note by Metz, Puhan and Winkler (1968).  相似文献   

10.
Abstract Granulite facies marbles from the Upper Calcsilicate Unit of the Reynolds Range, central Australia, contain metre-scale wollastonite-bearing layers formed by infiltration of water-rich (XCO2= 0.1–0.3) fluids close to the peak of regional metamorphism at c. 700° C. Within the wollastonite marbles, zones that contain <10% wollastonite alternate on a millimetre scale with zones containing up to 66% wollastonite. Adjacent wollastonite-free marbles contain up to 11% quartz that is uniformly distributed. This suggests that, although some wollastonite formed by the reaction calcite + quartz = wollastonite + CO2, the wollastonite-rich zones also underwent silica metasomatism. Time-integrated fluid fluxes required to cause silica metasomatism are one to two orders of magnitude higher than those required to hydrate the rocks, implying that time-integrated fluid fluxes varied markedly on a millimetre scale. Interlayered millimetre -to centimetre-thick marls within the wollastonite marbles contain calcite + quartz without wollastonite. These marls were probably not infiltrated by significant volumes of water-rich fluids, providing further evidence of local fluid channelling. Zones dominated by grandite garnet at the margins of the marl layers and marbles in the wollastonite-bearing rocks probably formed by Fe metasomatism, and may record even higher fluid fluxes. The fluid flow also reset stable isotope ratios. The wollastonite marbles have average calcite (Cc) δ18O values of 15.4 ± 1.6% that are lower than the average δ18O(Cc) value of wollastonite-free marbles (c. 17.2 ± 1.2%). δ13C(Cc) values for the wollastonite marbles vary from 0.4% to as low as -5.3%, and correlations between δ18O(Cc) and δ13C(Cc) values probably result from the combination of fluid infiltration and devolatilization. Fluids were probably derived from aluminous pegmatites, and the pattern of mineralogical and stable isotope resetting implies that fluid flow was largely parallel to strike.  相似文献   

11.
The S.W. Nabitah Mobile Belt, Saudi Arabia, contains a Proterozoic island-arc complex. In the Qadda area, the metavolcanic-dominated supracrustal sequence records amphibolite facies regional metamorphism of high-T , low-P type. Calcsilicate rocks and aluminous dolomitic marbles within the supracrustal sequence have been studied in detail to refine estimates of peak metamorphic P–T conditions and assess the role of fluids during prograde and retrograde metamorphism. Fluid-independent thermobarometers (including the calcite–dolomite thermometer and P-sensitive equilibria involving grossular, wollastonite, anorthite, meionite, quartz and calcite) yield peak P–T conditions of c. 650–660 °C, 4 kbar, both higher than previous estimates, giving a revised average thermal gradient of c. 45 °C km–1. The close match between the peak temperatures implied by calcite–dolomite thermometry and those recorded by univariant devolatilization equilibria suggests that the calcareous rocks were fluid-bearing during late-prograde and peak metamorphic stages. These fluids were essentially binary H2O–CO2 mixtures with low NaCl and HF concentrations. Most were H2O-rich, with XCO2 between 0.02 and 0.2, but values of c. 0.6 are recorded by two samples. High modal abundances of the solid products of decarbonation reactions (e.g. c. 10–50% wollastonite) in many of the rocks that record low-XCO2 equilibrium fluids implies infiltration of significant quantities of externally derived aqueous fluid during late-prograde metamorphism, but not enough to exhaust the buffering capacity of the rocks. Calculated minimum time-integrated fluid-to-rock ratios of five wollastonite-bearing calcsilicate rocks range from 0.7±0.22 to 1.39±0.46 (1σ); those of six marbles range from c. 0 to 4±1.4. The latter variation occurs on a metre-scale, implying focusing of fluid flow. Diopside-rich rocks record fluid-to-rock ratios of up to 88±48. Penetrative wollastonite lineations indicate a temporal link between infiltration and distributed ductile deformation. Infiltrating fluids were probably derived both from the prograde dehydration of adjacent metabasalts and metatuffs and from crystallization of voluminous pretectonic granitoid intrusions. In general, fluid-to-rock ratios deduced for the metavolcanic-dominated Qadda area are similar to those recorded by rocks in the metasediment-dominated terrane of N. New England. The occurrence of post-tectonic retrograde hydration textures in both carbonate-bearing and carbonate-free rocks otherwise lacking hydrous minerals testifies to infiltration of aqueous fluids during retrograde metamorphism in the absence of penetrative deformation. Minimum fluid-to-rock ratios calculated for secondary grossular reaction rims in some calcsilicates are c. 0.04. Later patchy hydration of scapolite probably utilized static, pore-filling fluids remaining after the early retrograde infiltration.  相似文献   

12.
Calcareous hornfelses and marbles all contain calcite+K-feldspar+quartz+sphene±diopside±plagioclase ±scapolite±clinozoisite. In addition, rocks on one side of a fault contain combinations of biotite, amphibole, and muscovite while those on the other side contain combinations of grossular, wollastonite, and axinite. At bars, mineral-fluid equilibria in biotite and amphibole-bearing rocks record T= 440° C and garnet-bearing rocks record T=540° C and Conventional volumetric fluid-rock ratios were calculated using measured progress of prograde decarbonation reactions and the conditions of metamorphism: marbles, 0–0.4; amphibole-bearing hornfelses, 1.0–1.4; garnet-bearing hornfelses, 2.8–6.7. Decarbonation reactions were driven by pervasive infiltration of rock by reactive aqueous fluids. Differences in fluid-rock ratio between interbedded marble and hornfels and lack of correlation between fluid-rock ratio and whole-rock Cl-content, however, argue for channelized fluid flow along lithologic layers. A new analysis of reaction progress allows estimation of time-integrated fluxes for a specified temperature gradient along the direction of flow. Results are: marbles, 0–0.1×105 cm3/cm2; amphibole-bearing hornfelses, 0.8–1.3×105 cm3/cm2; garnet-bearing hornfelses, 1.2–2.5 × 105 cm3/cm2. Fluid flowed from regions of low to regions of high temperature. Using a simple thermal model for the area, the duration of contact metamorphism was estimated as 105 years. Assuming the time of fluid flow was the same as the duration of the thermal event, the first measurements of average metamorphic fluxes (q) and permeabilities (k) are: average marbles, q=0–0.3×10–8 cm/s and k =2×10–6 darcy; hornfels, q=3–8×10–8 cm/s and k =20–53×10–6 darcy. Estimated premeabilities are within the range of values measured for metamorphic rocks in the laboratory. Fluxes, permeabilities, and whole-system fluidrock ratios are similar to those estimated for the Skaergaard hydrothermal system by Norton and Taylor (1979).  相似文献   

13.
This contribution addresses contact metamorphism and fluid flow in calcareous rocks of the Neoproterozoic Shaler Supergroup on Victoria Island, Arctic Canada. These processes occurred due to intrusion of gabbroic sills and dykes at c. 720 Ma during the Franklin magmatic event, which was associated with the break‐up of Rodinia. The intrusive sheets (sills and dykes) are a few metres to ~50 m thick. Metasedimentary rocks were examined in three locations with very good exposures of vertical dykes feeding horizontal sills, the Northern Feeder Dyke (NFD) complex, the Southern Feeder Dyke (SFD) complex and the Uhuk Massif. In the NFD and SFD complexes, protoliths were limestones and dolostones with minor silicates, and at the Uhuk Massif, the protoliths were silty dolostones. At the time of magma emplacement, these locations were at depths of 1–4 km. The widths of contact aureoles are only several decametres wide, commensurate with thicknesses of the dykes and sills. Splays of tremolite mark incipient metamorphism. Highest grade rocks in the NFD and SFD complexes contain the prograde assemblage diopside + phlogopite whereas at Uhuk they contain the assemblage vesuvianite + garnet + diopside. The assemblages are successfully modelled with TX(CO2)fluid pseudosections that suggest achievement of CO2‐rich fluid compositions due to early decarbonation reactions, followed by influx of aqueous fluids after peak metamorphism. Rapid heating of host rocks and short near‐peak temperature intervals are demonstrated by the prevalent morphology of diopside as radial splays of acicular crystals that appear to pseudomorph tremolite and by incomplete recrystallization of calcite in marbles. Calcsilicates in the roof of one sill at Uhuk experienced metasomatic influx of Fe that is evidenced by nearly pure andradite rims on grossular garnet. Vesuvianite, which overgrew the grossular portions of garnet, also contains ferric iron. Vesuvianite was partially consumed during retrograde growth of serpentine and andradite. The occurrence of serpentine in high‐grade portions of aureoles is consistent with eventual levelling‐off of temperatures between 350 and 400 °C, an inference that is supported by modelled conductive heat transfer from the cooling magma sheets. Focused fluid flow near intrusion‐wall rock contacts is demonstrated by narrow zones of anomalously low δ13C and δ18O values of carbonate minerals. Although the up to 5‰ decrease of both δ13C and δ18O values from sedimentary values is much smaller than is typical for calcsilicate aureoles around large plutons, it is greater than what could have been achieved by decarbonation alone. The decrease in δ13C is attributed to fluid‐mediated exchange with organic low‐13C carbon that is dispersed through the unmetamorphosed rocks and the decrease in δ18O is attributed to fluid‐mediated isotopic exchange with the gabbroic intrusive sheets. This study shows that when gabbroic sills and dykes intrude a sedimentary basin, (i) contact aureoles are likely to be narrow, only on the scale of several decametres; (ii) short high‐temperature regimes prevent achievement of equilibrium metamorphic textures; and (iii) TX(CO2)fluid paths in calcareous contact aureoles are likely to be complex, reflecting a transition from prograde decarbonation reactions to influx of aqueous fluids during cooling.  相似文献   

14.
《Ore Geology Reviews》2003,22(1-2):17-39
Many talc deposits occur in the Hwanggangri Mineralized Zone (HMZ) in dolomitic marbles of the Cambro-Ordovician Samtaesan Formation within 1 km of the contact with the Cretaceous Muamsa Granite. Talc commonly forms fine-grained, fibrous aggregates, or pseudomorphs after tremolite; abundant tremolite is included as impurities in the talc ore. Talc generally was derived from tremolite in calc-silicate rock within the dolomitic marble. Calc-silicate rock, consisting mainly of tremolite and diopside, was generated from silicic metasomatism during the prograde stage, which promoted decarbonation reactions until dolomite was exhausted locally. Hydrothermal alteration of calc-silicate rock to talc is marked by the addition of Mg and Si, and the leaching of Ca; Cr, Co, and Ni were relatively immobile during the retrograde stage. Contact metamorphism related to the granite intrusion generated the successive appearance of tremolite, diopside, and forsterite, or wollastonite-bearing assemblages in the marble, depending on the bulk rock composition. The XCO2 content of the metamorphic fluids rose initially above XCO2=0.6, and decreased steadily toward a water-rich composition with increasing temperature above 600 °C in the calcitic marble, while buffered reaction of the dolomitic marble occurred at higher XCO2 conditions above 600 °C. Talc mineralization developed under metastable conditions with infiltration of large amounts of igneous fluids along a fault-shattered zone during the retrograde stage and is characterized by the loss of Ca2+ with the addition of Mg2+. Oxygen and carbon isotopic variations of carbonate and calc-silicate minerals are in agreement with theoretical relationships determined for decarbonation products of contact metamorphism. Talc formation temperatures obtained from oxygen isotope fractionation, TXCO2 relationships, and activity diagrams range from 380 to 400 °C.  相似文献   

15.
Hydrothermal experiments with H2O-CO2 fluids at Pfluid = 6 kbar yielded the following quilibrium conditions for reactions important in metamorphosed siliceous dolomites (T = °C; X = Xco2): (3) dolomite + 2 quartz = diopside + 2 CO2T = 620 ± 8X = 0.73 ± 0.03 (5) 5 dolomite + 8 quartz + H2O = tremolite + 3 calcite + 7 CO2T = 600 ± 5 550 ±5 540±5 500±5X = 0.66 ± 0.03 0.21 ± 0.03 0.21 ± 0.04 0.06 ± 0.02 (7) 3 dolomite + 4 quartz + H2O = talc + 3 calcite + 3 CO2T = 550±5 500±5 450 ±5X = 0.25 ± 0.05 0.07 ± 0.02 0.03 ± 0.02 (8) 2 dolomite + talc + 4 quartz = tremolite + 4 CO2T = 550 ± 5 540 ±5 500 ± 5X = 0.22 ± 0.03 0.21 ± 0.02 0.06 ± 0.02 A thermodynamically self-consistent 6 kbar T-XCO2, topology results by extrapolating equilibria from experimental brackets using a modified Redlich-Kwong equation for activities in H2O-CO2 mixtures. This topology restricts the assemblage talc + calcite to a narrow stability band in T-XCO2 space at XCO2 < 0.55 and T < 590°C. Accordingly, the occurrence of talc + calcite in pure siliceous dolomites metamorphosed at Pfluid = 6 kbar implies correspondingly water-rich fluids.  相似文献   

16.
Two roof pendants in the Hope Valley area, Alpine County, containabundant calc-silicate assemblages which can be related to univariantor invariant equilibria in the CaO-Al3O3-SiO2-H2O-CO2 system.Such assemblages are considered to represent components of reactionsthat buffered the chemistry of the pore fluid. Through dataobtained from microprobe analysis it is concluded that solidsolution in plagioclase, garnet, and clinozoisite are importantvariables such that on a TXco2 projection each sample had aunique path during metamorphism. Differences in the plagioclasecomposition of nearby samples with assemblages related by thereaction: grossularite(s.s)+quartz = anorthite(s.s.)+wollastonite, suggest unique equilibration temperatures for assemblages inlocal domains. In the Twin Lakes pendant in Fresno County, thereaction: clinohumite+calcite+CO2= 4forsterite+dolomite+H2O, is importantin magnesian marbles. Contrasting parageneses, which are relatedby this equilibrium, are considered to reflect variations influid composition. Constrasting assemblages in calc-silicaterocks, which are linked by the reactions: calcite+quartz= wollastonite+CO2, tremolite+calcite= dolomite+diopside+CO2+H2O, exist down to the scale of a thin section. Variation in Ti contentof idocrase may be an important factor in assemblages linkedby reactions involving this phase. This study suggests that during contact metamorphism of calcareousrocks in the Sierra Nevada, H2O and CO2 behaved as ‘initialvalue components’ (Zen, 1963) whose activities were controlledby reactions withion local systems.  相似文献   

17.
Abstract The Rockley Volcanics from near Oberon, New South Wales occur within the aureole of the Carboniferous Bathurst Batholith and have been contact metamorphosed at P ∼ 100 ± 50MPa (10.5kbar) and a maximum T ∼ 565°C in the presence of a C–O–H fluid. Prior to contact metamorphism the volcanics were regionally metamorphosed and altered with the extensive development of actinolite, chlorite, plagioclase, quartz and calcite. The contact metamorphosed equivalents of these rocks have been subdivided into: Ca-poor (cordierite + gedrite), Mg-rich (amphibole + olivine + spinel), mafic (amphibole + plagioclase) and Ca-rich (amphibole + garnet + diopside; diopside + plagioclase; garnet + diopside + wollastonite) rocks.
The chemistry of the minerals in the hornfelses was controlled by the bulk rock chemistry and fluid composition. Pargasites and hastingsites as well as an unusual phlogopite with blue green pleochroism, are found in Ca-rich hornfelses. A comparison of the assemblages with experimentally derived equilibria suggests that the fluid phase associated with the Ca-rich hornfelses was water-rich (Xco2= 0.1 to 0.3) while that associated with the Mg-rich hornfelses was enriched in CO2 (Xco2 > 0.7). The different hornfels types have reacted to contact metamorphism independently in both their solid and fluid chemistries.  相似文献   

18.
 The Middle Miocene Tobe hornfels in the Sanbagawa metamorphic belt, western Shikoku, southwest Japan, is characterized by an abnormally steep metamorphic gradient compared with other hornfelses associated with intrusive bodies. The basic hornfels, originally Sanbagawa greenschist rocks, is divided into the following three metamorphic zones: plagioclase, hornblende, and orthopyroxene. The plagioclase zone is defined by the appearance of calcic plagioclase, the hornblende zone by the assemblage of hornblende+calcic plagioclase+quartz, and the orthopyroxene zone is characterized by the assemblage of orthopyroxene + clinopyroxene + plagioclase + quartz. Calcic amphibole compositions change from actinolite to hornblende as a result of the continuous reactions during prograde metamorphism. Petrographical and thermometric studies indicate a metamorphic temperature range of 300–475°C for the plagioclase zone, 475–680°C for the hornblende zone, and 680–730°C for the orthopyroxene zone. The temperature gradient based on petrological studies is approximately 5°C/m, which is unusually high. Geological and petrological studies demonstrate that the hornfelses were formed by the focusing of high-temperature fluids through zones of relatively high fracture permeability. The steep thermal gradient in the Tobe hornfels body is consistent with a large fluid flux, greater than 8.3 × 10–7 m3 m–2S–1, over the relatively short duration of metamorphism, approximately 100 years. Received: 10 October 1995 / Accepted: 28 May 1996  相似文献   

19.
The intracrystalline diffusion rate of oxygen in diopside was constrained based on natural isotopic variations from a granulite facies marble from Cascade Slide, Adirondacks (New York, USA). The oxygen isotope compositions of the diopsides, measured as a function of grain size, are nearly constant (20.9 ± 0.3‰ vs. SMOW) over the entire measured size range (0.3–3.2 mm diameter). The δ18O values of the cores of calcite grains are 23.0‰. Temperature estimates based on the Δ18O(calcite-diopside) are 800d?C, in agreement with the highest previous thermometric estimates for these rocks. The lack of isotopic variation in the diopsides as a function of grain size requires that the oxygen intracrystalline diffusion rate in diopside from the Adirondack samples was very slow. The maximum diffusion rates (D800d?C parallel to the c-axis) were calculated with an infinite reservoir model (IRM) and a finite reservoir model (FRM) that incorporates mineral modal abundances and initial isotopic variations. For an assumed activation energy (Q) = 100 kJ/mol, the IRM diffusion rate estimate of 1.6 times 10-20cm2/s is two orders of magnitude faster than from the FRM; at Q=500kJ/mol, the D800d?C estimate for both methods is c. 5.6 times 10-20 cm2/s. The present results require that a hydrothermal fluid significantly enhances the diffusion rate of oxygen in diopside if previous data are correct. The δ18O(SMOW) and δ13C(PDB) values of the calcite, measured in situ with a CO2 laser, are 22.9 ± 0.3, 0.1±0.3‰ in the grain cores, 22.1 ±0.3, 0.2 ±0.1‰ at the grain boundaries and 21.7 ±0.4, -0.6±0.1‰ abutting diopside grains. The δ18O and δ13δC values measured conventionally are: crystal cores, 22.96, -0.95‰; abutting diopside grains, 22.38, -0.93‰; bulk, 22.79, -0.95%. Use of the bulk δ18O(calcite) values for thermometry yields unreasonably high temperatures. The lower δ18O values at the calcite grain boundaries are not due to retrograde diffusional exchange with the diopside, they are thought to be a result of a late retrograde fluid infiltration.  相似文献   

20.
Periclase formed in steeply dipping marbles from the Beinn an Dubhaich aureole, Scotland, and the Silver Star aureole, Montana, by the reaction dolomite = periclase + calcite + CO2. Equilibrium between rock and fluids with X CO 2 < 1 requires that reaction was infiltration-driven. Brucite pseudomorphs after periclase occur in the Beinn an Dubhaich aureole either as bed-by-bed replacement of dolomite or in a lens along the contact between dolomite and a pre-metamorphic dike. Transport theory predicts that infiltration drove both periclase reaction and 18O-depletion fronts which moved at significantly different velocities along the flow path. The distributions of brucite and 18O-depleted rocks are identical in surface exposures, thus indicating upward flow. Time-integrated flux (q) was <500 mol/cm2 and the fluid source was magmatic. Because periclase and its hydrated equivalent brucite are unaltered to dolomite by retrograde reactions, the exposure of brucite marbles accurately images the flow paths of peak metamorphic fluids. In the Silver Star aureole brucite pseudomorphs after periclase exclusively occur in tabular bodies that are beds with elevated Mg/Ca. The spatial pattern of 18O-depletion requires upward vertical fluid flow. Estimated prograde q ≈ 103–104 mol/cm2 and the fluid source was magmatic. Low Mg/Ca, 18O-depleted, brucite-free rocks pose a dilemma because the periclase reaction front should have traveled ≈18 times further through them than the isotope alteration front. The dilemma is resolved by reaction textures that indicate periclase and brucite were destroyed in low Mg/Ca rocks by infiltration-driven retrograde carbonation reactions. Values of retrograde q were ≈103–104 mol/cm2. Brucite (after periclase) was preserved only in high Mg/Ca layers where periclase developed in greater abundance. The geometry of brucite marbles at Silver Star thus reflects the location of high Mg/Ca beds rather than the geometry of fluid flow. Retrograde reactions must be considered before the mineralogical record of prograde fluid flow can correctly be interpreted. In both aureoles fluid flow, mineral reaction, and isotope depletion were structurally controlled by bedding and lithologic contacts. Received: 30 July 1996 / Accepted: 21 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号