首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Ions can speed up the formation of aerosol particles. The former studies have mainly concerned on the role of the ion charge itself. We have studied the possible (additional) role of the actual small air ion spectrum shape, and the quantitative role of ion–ion recombination pathway. By means of our ion evolution model, formation of new species (H2SO4)n(NH3)m(HNO3)k via ion–ion recombination was investigated. The model shows how the generation rate of the new species depends on the concentrations of H2SO4 and NH3, and how it depends on the tropospheric background aerosol situation. The rate can be up to a few new neutral complexes per cubic centimeter and per second. New particle generation via ion–ion recombination provides an extra channel, especially for the clean atmosphere. Former results have shown that such situations are often present in Antarctica. Our aerosol spectrum measurements reveal a number of similar non-Antarctic results. Sometimes, such situations are followed by aerosol bursts, which may be (partly) due to an ion–ion recombination channel.  相似文献   

2.
Inorganic seed particles have relatively large surface area, and play an important role in the formation and aging of secondary organic aerosol (SOA). The effects of dry (NH4)2SO4 which is the most commonly found in urban atmosphere on the aged benzene SOA were qualitatively studied utilizing aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with Fuzzy C-Means (FCM) clustering algorithm in this study. Experimental results indicated that nitrophenol, oxocarboxylic acid, epoxide products are the predominant components in the aged benzene SOA in the presence of low concentration (about 10 μg m?3) of dry (NH4)2SO4. These aged products are the same as the previously obtained aged benzene SOA without (NH4)2SO4 seed aerosol, indicating that low concentration of dry (NH4)2SO4 acts just as the nucleation or condensation center of the SOA, and do not affect the chemical composition of SOA. However, 1 H-imidazole, 1 H-imidazole-2-carbaldehyde, hydrated 1 H-imidazole-2-carbaldehyde, 2,2′-biimidazole, hydrated N-glyoxal substituted 1 H-imidazole, N-glyoxal substituted hydrated 1 H-imidazole-2- carbaldehyde, hydrated mono glyoxal substituted hydrated 1 H-imidazole-2-carboxaldehyde, mono glyoxal substituted 2,2-biimidazole and hydrated glyoxal dimer substituted imidazole which are formed from ammonium ion reaction with glyoxal are the major particulate products in the aged benzene SOA in the presence of high concentration (about 100 μg m?3) of dry (NH4)2SO4. The retention of water on the dry (NH4)2SO4 particles creates ammonium ion, which can promote the formation of high-molecular-weight (HMW) products through multiphase reactions such as hydration and polymerization of aldehydes form from OH-initiated oxidation of benzene.  相似文献   

3.
4.
A one-dimensional cloud model with size-resolved microphysics and size-resolved aqueous-phase chemistry, driven by prescribed dynamics, has been used to study gas scavenging by weak precipitation developed from low-level, warm stratiform clouds. The dependence of the gas removal rate on the physical and chemical properties of precipitation has been explored under controlled initial conditions. It is found that the removal of four gaseous species (SO2, NH3, H2O2 and HNO3) strongly depends on the total droplet surface area, regardless the mean size of droplets. The removal rates also correlate positively with the precipitation rate, especially for precipitation having a mean radius larger than 20 μm. The dependence of the scavenging coefficients on the total droplet surface area is stronger than on the precipitation rate. The removal rates of SO2, NH3 and H2O2 by precipitation strongly depend on the others' initial concentrations. When NH3 (or H2O2) concentration is much lower than that of SO2, the removal rate of SO2 is then controlled by the concentration of H2O2 (or NH3). The removal of NH3 (or H2O2) also directly depends on the concentration of SO2. NH3 and H2O2 can also indirectly affect each other's removal rate through interaction with SO2. The scavenging coefficient of SO2 increases with the concentration ratio of NH3 to SO2 if the ratio is larger than 0.5, while the scavenging coefficient of NH3 increases with the concentration ratio of SO2 to NH3 when the ratio is smaller than 1. The scavenging coefficient of H2O2 generally increases with the concentration ratio of SO2 to H2O2. Although the Henry's law equilibrium approach seems to be able to simulate gas scavenging by cloud droplets, it causes large errors when used for simulating the scavenging of soluble gas species by droplets of precipitating sizes.  相似文献   

5.
We investigated the acidity and concentrations of water-soluble ions in PM2.5 aerosol samples collected from an urban site in Beijing and a rural site in Gucheng, Hebei Province from November 2016 to January 2017 to gain an insight into the formation of secondary inorganic species. The average SO42–, NO3, and NH4+ concentrations were 8.3, 12.5, and 14.1 μg m–3, respectively, at the urban site and 14.0, 14.2, and 24.2 μg m–3, respectively, at the rural site. The nitrogen and sulfur oxidation ratios in urban Beijing were correlated with relative humidity (with correlation coefficient r = 0.79 and 0.67, respectively) and the aerosol loadings. Based on a parameterization model, we found that the rate constant of the heterogeneous reactions for SO2 on polluted days was about 10 times higher than that on clear days, suggesting that the heterogeneous reactions in the aerosol water played an essential role in haze events. The ISORROPIA II model was used to predict the aerosol pH, which had a mean (range) of 5.0 (4.9–5.2) and 5.3 (4.6–6.3) at the urban and rural site, respectively. Under the conditions with this predicted pH value, oxidation by dissolved NO2 and the hydrolysis of N2O5 may be the major heterogeneous reactions forming SO42– and NO3 in haze. We also analyzed the sensitivity of the aerosol pH to changes in the concentrations of SO42–, NO3, and NH4+ under haze conditions. The aerosol pH was more sensitive to the SO42– and NH4+ concentrations with opposing trends, than to the NO3 concentrations. The sensitivity of the pH was relatively weak overall, which was attributed to the buffering effect of NH3 partitioning.  相似文献   

6.
The effects of below-cloud aerosol on the acidification process of rain   总被引:1,自引:0,他引:1  
Using a model of the acidification process of rain, we calculate and analyze the effects and contributions of a below-cloud aerosol in its different concentrations and acidities on the pH and ion components of rain (SO 4 2– , H+, NO 3 , NH 4 + , etc.) under the conditions of different concentrations of pollution gases. The results show that the aerosol has an acidification or alkalization effect on the rain which changes the pHs of rain and aerosol. As acidifying pollution gas concentrations (SO2, HNO3) are low, the acid aerosol has important effects on the pH and H+ of rain, but as the gas concentrations are high, the acid aerosol has very little effect. The alkalizing aerosol makes the pH of rain increase by between 0.3 and 0.5 and neutralizes about 60% of H+ in the rain. As alkalizing pollution gas NH3 exists, the acid aerosol has important effects on the pH and H+ of rain. But the alkalizing aerosol has very little effect, especially as the NH3 concentration is high. The percentage contribution of the aerosol to SO 4 2– in rain is generally 7–15%, the contribution of the aerosol to NO 3 is nearly the same as that of HNO3=1 ppb, and the contribution of the aerosol to NH 4 + is nearly the same as that of NH3, from 5 to 7 ppb, and is an important source of NH 4 + in rain. Finally, according to the actual conditions of typical regions in the south and north of China (Chongqing and Beijing), we analyze the effects of aerosol and pollution gases on the ion components of rain.  相似文献   

7.
In this study bulk airborne aerosol composition measured by the PILS-IC (integration time of 3 min 24 s) during TRACE-P P3B Flight 10 are used to investigate the ionic chemical composition and mixing state of biomass burning particles. A biomass burning plume, roughly 3–4 days old, moderately influenced by urban pollution aerosols recorded in the Philippine Sea is investigated. Focusing on the fine particle NO3, SO42−, K+, NH4+, and water-soluble organics, the observed correlations and nearly 1-to-1 molar ratios between K+ and NO3 and between NH4+ and (SO42−+ inferred Organics) suggest the presence of fine-mode KNO3, (NH4)2SO4, and NH4(Organics) aerosols. Under the assumption that these ion pairs existed, and because KNO3 is thermodynamically less favored than K2SO4 in a mixture of NO3, SO42−, K+, NH4+, and Organic anions, the measurements suggest that aerosols could be composed of biomass burning particles (KNO3) mixed to a large degree externally with the (NH4)2SO4 aerosols. A “closed-mode” thermodynamic aerosol simulation predicts that a degree of external mixing (by SO42− mass) of 60 to 100% is necessary to achieve the observed ionic associations in terms of the existence of KNO3. However, the degree of external mixing is most likely larger than 90%, based on both the presence of KNO3 and the amounts of NH4NO3. Calculations are also shown that the aerosol mixing state significantly impacts particle growth by water condensation/evaporation. In the case of P3B Flight #10, the internal mixture is generally more hygroscopic than the external mixture. This method for estimating particle mixing state from bulk aerosol data is less definitive than single particle analysis, but because the data are quantitative, it may provide a complementary method to single particle chemical analysis.  相似文献   

8.
(NH4)2SO4, CaCl2, Na2SiO3 and NaNO3 were selected as surrogates of inorganic seed aerosols of ambient atmosphere of Chinese urban areas, respectively, to study their effects on the formation of secondary organic aerosol (SOA) in the toluene/CH3ONO/NOx photooxidation system. The SMPS and aerosol laser time-of-flight mass spectrometer (ALTOFMS) was used to measure the aerodynamic size and chemical composition of individual SOA particles in real-time. Experimental results indicate that either the growth or products of SOA is affected by the presence of inorganic seed aerosol. Inorganic seed aerosols would promote growth rates of SOA formation at the start of the reaction and inhibits its formation rate with prolonging the reaction time. In the case of about 100 μg m?3 seed aerosol load, the addition of Na2SiO3 induced a same growth rate of SOA formation as NaNO3. The influence of four individual seed aerosols on the generation of SOA decreased in the order of CaCl2 > (NH4)2SO4 > NaNO3, Na2SiO3. The presence of Na2SiO3 or NaNO3 has no obvious effect on the growth rates of SOA formation, but it does increase the yield of organic acid and nitrogen-containing organic compounds, respectively. Besides the significantly effect on the growth rate of SOA formation, the presence of CaCl2 or (NH4)2SO4 can lead to the formation of high-molecular weight species which is found to be positively correlated with the hygroscopic behavior of seed aerosols. The CaCl2 shows the strongest hygroscopic behavior among the four individual seed aerosols, and the most significant promotion effect on the formation of the high-molecular weight species. It is proposed that the SOA generation enhancement and high-molecular weight products are achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of CaCl2 and (NH4)2SO4 seed aerosols.  相似文献   

9.
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.  相似文献   

10.
An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).  相似文献   

11.
In this study the possible conditions for new aerosol particle formation in a background area of Helsinki have been analysed. The measurements of aerosol particle size distribution, main gaseous pollutant compounds, UV spectra and meteorological parameters were performed during April–May 1993. The main interest was concentrated on the investigations of photochemical OH radical formation, the oxidation of gas phase SO2 to H2SO4 and the formation of H2SO4---H2O aerosol particles. The measurements were analysed using a model for OH radical formation and aerosol dynamics. The analysis of aerosol size distributions was carried out using positive matrix factorization. The main conclusion is that based on our model analysis no evidence of new particle formation in the vicinity of the measurement station was found. However, the high concentrations of aerosol particles in the ultrafine size range indicate that some other particle formation pathways are to be considered.  相似文献   

12.
Abstract

Aqueous‐phase H2O2 production in a rainband and its possible effect on sulphate production are studied by means of a two‐dimensional numerical model. In‐cloud peroxide production is incorporated into this chemistry model and its simulation results are compared with those in which aqueous‐phase H2O2 came only from the dissolution of gaseous H2O2 from the cloud interstitial air.

Results are presented for two different polluted situations ‐ Case 1 having initial SO2 and sulphate aerosol profiles representative of a moderately polluted air mass, and Case 2 having chemical profiles expected to increase the relative importance of oxidation to nucleation as a means of contributing sulphate to cloud and rain. Sulphate production increased in both cases, although in Case 1 the effect of this increase on the concentration of sulphate in rain is negligible because nucleation and scavenging of aerosol are the major processes by which sulphate enters cloud and rain. In Case 2, sulphate concentrations in rain increase by 5–10%. Under environmental conditions of low sulphate aerosol, where oxidation reactions are the dominant means for sulphate to enter cloud and rain, the neglect of sulphate produced by the additional H2O2 may lead to error. The usual uncertainties in the initial SO2 and sulphate aerosol vertical profiles, however, could be a more significant source of error in simulations of the chemistry of cloud and precipitation than the neglect of aqueous‐phase peroxide production during the lifetime of even a long‐lived system.  相似文献   

13.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

14.
Secondary aerosol formation was studied at Allahabad in the Indo-Gangetic region during a field campaign called Land Campaign-II in December 2004 (northern winter). Regional source locations of the ionic species in PM10 were identified by using Potential Source Contribution Function (PSCF analysis). On an average, the concentration of water soluble inorganic ions (sum of anions and cations) was 63.2 μgm−3. Amongst the water soluble ions, average NO3 concentration was the highest (25.0 μgm−3) followed by SO42− (15.8 μgm−3) and NH4+ (13.8 μgm−3) concentrations. These species, contributed 87% of the total mass of water soluble species, indicating that most of the water soluble PM10 was composed of NH4NO3 and (NH4)2SO4/NH4HSO4 or (NH4)3H(SO4)2 particles. Further, the concentrations of SO42−, NO3, and NH4+ aerosols increased at high relative humidity levels up to the deliquescence point (∼63% RH) for salts of these species suggesting that high humidity levels favor the conversion and partitioning of gaseous SO2, NOx, and NH3 to their aerosol phase. Additionally, lowering of ambient temperature as the winter progressed also resulted in an increase of NO3 and NH4+ concentrations, probably due to the semi volatile nature of ammonium nitrate. PSCF analysis identified regions along the Indo-Gangetic Plain (IGP) including Northern and Central Uttar Pradesh, Punjab, Haryana, Northern Pakistan, and parts of Rajasthan as source regions of airborne nitrate. Similar source regions, along with Northeastern Madhya Pradesh were identified for sulfate.  相似文献   

15.
Our long-term study provides an unequivocal evidence for near-quantitative (80–100%) depletion of chloride from sea-salts in the marine atmospheric boundary layer (MABL) of tropical Bay of Bengal. During the late NE-monsoon (Jan-Mar), continental outflow from south and south-east Asia dominate the wide-spread dispersal of pollutants over the Bay of Bengal. Among anthropogenic constituents, SO 4 2? (range: 0.6–35 μg m?3) is the most dominant. The non-sea-salt SO 4 2? (nss-SO 4 2? ) constitutes a major fraction (55–65%) of the aerosol water-soluble ionic composition (WSIC), whereas contribution of NO 3 ? is relatively minor. The magnitude of Cl-deficit (with respect to its sea-salt proportion) exhibits linear increase with the excess-nss-SO 4 2? (excess over NH 4 + ). We propose that displacement of HCl from sea-salt aerosols by H2SO4 is a dominant reaction mechanism for the chloride-depletion. These results also suggest that sea-salts could serve as a potential sink for anthropogenic SO2 in the downwind polluted marine environment. Furthermore, loss of hydrogen chloride, representing a large source of reactive chlorine, has implications to the oxidant chemistry in the MABL (oxidation of hydrocarbons and dimethyl sulphide).  相似文献   

16.
Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coefficients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH4)2SO4, NH4NO3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.  相似文献   

17.
The chemical removal of SO2 in the presence of different aerosol systems has been investigated in laboratory experiments using a dynamic flow reactor. The aerosols consisted of wetted particles containing one of the following substances: MnCl2, Mn(NO3)2, MnSO4, CuCl2, Cu(NO3)2, CuSO4, FeCl3, NaCl. The SO2 removal rate R was measured as a function of the SO2 gas phase concentration (SO2)g, the spatial metal concentration CMe, and the relative humidity rH in the reactor. A first-order dependence with regard to (SO2)g was observed for each type of aerosol. For the Mn(II) and Cu(II) aerosols R was found to be a non-linear function of CMe except for MnSO4 and Cu(NO3)2 particles. The removal rate showed a significant increase with the relative humidity particularly when rH was close to the deliquescence point of the wetted particles. Among the Mn(II) and Cu(II) aerosols investigated Mn(NO3)2 was found to be most efficient for the chemical removal of SO2 at atmospheric background conditions, especially in haze and fog droplets. The results further indicate that the catalytic oxidation of S(IV) in such aerosol systems may be as efficient as its oxidation by H2O2 in cloud water.  相似文献   

18.
In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m? 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42?] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m? 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42?]  1.5 and much lower for NH4+]/[SO42?] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42?] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42?]  1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42?] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42?] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42?] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42?]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.  相似文献   

19.
《Atmospheric Research》2007,83(3-4):688-697
Intensive measurements of gas and aerosol for 2 weeks were carried out at Qingdao (gas and aerosol in 2000, 2001 and 2002), Fenghuangshan (gas and aerosol in 2000 and 2001), and Dalian (aerosol in 2002) in the winter–spring period. High SO2 episodes were observed on 18 January 2000 at both Qingdao and Fenghuangshan. According to back trajectory calculations and analysis of gaseous species, high SO2 episodes were caused by local pollution and transport.Nitrate, sulfate and ammonium were the major species in PM2.5. Mass fractions of NO3, nss-SO42− and NH4+ at Qingdao in 2002 were 10%, 12% and 5.5% for PM2.5, respectively, which were higher than that of nss-Ca2+ (1%). Chemical compositions observed at Dalian and Fenghuangshan were similar to those at Qingdao. The mass ratio of nss-SO42−/SO2 at Qingdao in winter was low (< 1.2), indicating that sulfate was probably produced by the slow oxidation of SO2 in the gas phase and/or was transported from outside of Qingdao in winter. The equivalent ratio of NH4+ to nss-SO42− was 1.39, suggesting that ammonium sulfate was one of the major chemical compositions in PM2.5. The NO3/SO42− ratio at Qingdao was higher than that at remote places in East Asia. Gas and aerosol data obtained at Fenghuangshan were similar to data at Qingdao, suggesting that emissions from small cities may have a great influence on pollution in northern China.  相似文献   

20.
A three-dimensional model of the global ammonia cycle   总被引:16,自引:0,他引:16  
Using a three-dimensional (3-D) transport model of the troposphere, we calculated the global distributions of ammonia (NH3) and ammonium (NH 4 + ), taking into account removal of NH3 on acidic aerosols, in liquid water clouds and by reaction with OH. Our estimated global 10°×10° NH3 emission inventory of 45 Tg N-NH3 yr provides a reasonable agreement between calculated wet NH 4 + deposition and measurements and of measured and modeled NH 4 + in aerosols, although in Africa and Asia especially discrepancies exist.NH3 emissions from natural continental ecosystems were calculated applying a canopy compensation point and oceanic NH3 emissions were related to those of DMS (dimethylsulfide). In many regions of the earth, the pH found in rain and cloud water can be attributed to acidity derived from NO, SO2 and DMS emissions and alkalinity from NH3. In the remote lower troposphere, sulfate aerosols are calculated to be almost neutralized to ammonium sulfate (NH4)2SO4, whereas in the middle and upper troposphere, according to our calculations, the aerosol should be more acidic, as a result of the oxidation of DMS and SO2 throughout the troposphere and removal of NH3 on acidic aerosols at lower heights. Although the removal of NH3 by reaction with the OH radical is relatively slow, the intermediate NH2 radical can provide a substantial annual N2O source of 0.9 –0.4 +0.9 Tg, thus contributing byca. 5% to estimated global N2O production. The oxidation by OH of NH3 from anthropogenic sources accounts for 10% of the estimated total anthropogenic sources of N2O. This source was not accounted for in previous studies, and is mainly located in the tropics, which have high NH3 and OH concentrations. Biomass burning plumes, containing high NO x and NH3 concentrations provide favourable conditions for gas phase N2O production. This source is probably underestimated in this model study, due to the coarse resolution of the 3-D model, and the rather low biomass burning NH3 and NO x emissions adopted. The estimate depends heavily on poorly known concentrations of NH3 (and NO x ) in the tropics, and uncertainties in the rate constants of the reactions NH2 + NO2 N2O + H2O (R4), and NH2 + O3 NH2O + O2 (R7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号