首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Membrane‐Interface Probe and Hydraulic Profiling Tool (MiHpt) is a direct push probe that includes both the membrane interface probe (MIP) and hydraulic profiling tool (HPT) sensors. These direct push logging tools were previously operated as separate logging systems for subsurface investigation in unconsolidated formations. By combining these two probes into one logging system the field operator obtains useful data about the distribution of both volatile organic contaminants (VOCs) and relative formation permeability in a single boring. MiHpt logging was conducted at a chlorinated VOC contaminated site in Skuldelev, Denmark, to evaluate performance of the system. Formation cores and discrete interval slug tests are used to assess use of the HPT and electrical conductivity (EC) logs for lithologic and hydrostratigraphic interpretation. Results of soil and groundwater sample analyses are compared to the adjacent MiHpt halogen specific detector (XSD) logs to evaluate performance of the system to define contaminant distribution and relative concentrations for the observed VOCs. Groundwater profile results at moderate to highly contaminated locations were found to correlate well with the MiHpt‐XSD detector responses. In general, soil sample results corresponded with detector responses. However, the analyses of saturated coarse‐grained soils at the site proved to be unreliable as demonstrated by high RPDs for duplicate samples. The authors believe that this is due to pore water drainage observed from these cores during sampling. Additionally, a cross section of HPT pressure and MiHpt‐XSD detector logs provides insight into local hydrostratigraphy and formation control on contaminant migration.  相似文献   

3.
The hydraulic profiling tool (HPT) has become one of the basic tools for investigation of soils and unconsolidated formations over the last 10 years. The HPT is advanced into the subsurface using direct push methods. Clean water is injected into the formation from a small screened port on the side of the probe as it is steadily advanced into the subsurface. A downhole pressure sensor detects the pressure required to inject the water into the formation while an up-hole flowmeter monitors the water flow rate. An electrical conductivity (EC) array included in the lower end of the probe provides a simultaneous EC log of the bulk formation. The EC log, HPT pressure, and flow rate are logged and displayed onscreen as the probe is advanced. These logs enable the investigator to evaluate vertical changes in relative formation permeability at high resolution. Pressure dissipation tests may be performed at selected depths in coarse-grained materials to determine the piezometric pressure in saturated formations. This enables the operator to define the piezometric profile and determine the piezometric surface without a well. Post processing of the log in the viewing software provides for calculation of the corrected HPT pressure (Pc) and estimation of hydraulic conductivity (Est. K) within limits (~0.1 to 75 ft/d). In clean, coarse-grained materials the tandem EC log may be used to estimate groundwater specific conductance based on an Archie's Law model. Cross sections of HPT logs provide an efficient means to define hydrostratigraphy. When combined with contaminant logging tools such as the membrane interface probe (MIP) the HPT data may help to define contaminant migration pathways or contaminated low permeability zones that may result in back diffusion. The HPT can be a useful tool for many geoenvironmental investigations in unconsolidated formations.  相似文献   

4.
Most established methods to characterize aquifer structure and hydraulic conductivities of hydrostratigraphical units are not capable of delivering sufficient information in the spatial resolution that is desired for sophisticated numerical contaminant transport modeling and adapted remediation design. With hydraulic investigation methods based on the direct-push (DP) technology such as DP slug tests, DP injection logging, and the hydraulic profiling tool, it is possible to rapidly delineate hydrogeological structures and estimate their hydraulic conductivity in shallow unconsolidated aquifers without the need for wells. A combined application of these tools was used for the investigation of a contaminated German refinery site and for the setup of hydraulic aquifer models. The quality of DP investigation and the models was evaluated by comparisons of tracer transport simulations using these models and measured breakthroughs of two natural gradient tracer tests. Model scenarios considering the information of all tools together showed good reproduction of the measured breakthroughs, indicating the suitability of the approach and a minor impact of potential technical limitations. Using the DP slug tests alone yielded significantly higher deviations for the determined hydraulic conductivities compared to considering two or three of the tools. Realistic aquifer models developed on basis of such combined DP investigation approaches can help optimize remediation concepts or identify flow regimes for aquifers with a complex structure.  相似文献   

5.
Dietze M  Dietrich P 《Ground water》2012,50(3):450-456
Detailed information on vertical variations in hydraulic conductivity (K) is essential to describe the dynamics of groundwater movement at contaminated sites or as input data used for modeling. K values in high vertical resolution should be determined because K tends to be more continuous in the horizontal than in the vertical direction. To determine K in shallow unconsolidated sediments and in the vertical direction, the recently developed direct-push injection logger can be used. The information obtained by this method serves as a proxy for K and has to be calibrated to obtain quantitative K values of measured vertical profiles. In this study, we performed direct-push soil sampling, sieve analyses and direct-push slug tests to obtain K values in vertical high resolution. Using the results of direct-push slug tests, quantitative K values obtained by the direct-push injection logger could be determined successfully. The results of sieve analyses provided lower accordance with the logs due to the inherent limitations of the sieving method.  相似文献   

6.
A rapid method for hydraulic profiling in unconsolidated formations   总被引:6,自引:1,他引:5  
Information on vertical variations in hydraulic conductivity ( K ) can often shed much light on how a contaminant will move in the subsurface. The direct-push injection logger has been developed to rapidly obtain such information in shallow unconsolidated settings. This small-diameter tool consists of a short screen located just behind a drive point. The tool is advanced into the subsurface while water is injected through the screen to keep it clear. Upon reaching a depth at which information about K is desired, advancement ceases and the injection rate and pressure are measured on the land surface. The rate and pressure values are used in a ratio that serves as a proxy for K . A vertical profile of this ratio can be transformed into a K profile through regressions with K estimates determined using other techniques. The viability of the approach was assessed at an extensively studied field site in eastern Germany. The assessment demonstrated that this tool can rapidly identify zones that may serve as conduits for or barriers to contaminant movement.  相似文献   

7.
Electromagnetic (EM) logging provides an efficient method for high-resolution, vertical delineation of electrically conductive contamination in glacial sand-and-gravel aquifers. LM. gamma, and lithologic logs and specific conductance data from sand-and-gravel aquifers at five sites in the northeastern United States were analyzed to define the relation of KM conductivity to aquifer lithology and water quality. Municipal waste disposal, septic waste discharge, or highway deicing salt application at these sites has caused contaminant plumes in which the dissolved solids concentration and specific conductance of ground water exceed background levels by as much as 10 to 20 limes.
The major hydrogeologic factors that affected KM log response at the five sites were the dissolved solids concentration of the ground water and the silt and clay content in the aquifer. KM conductivity of sand and gravel with uncontaminated water ranged from less than 5 to about 10 millisiemens per meter (mS/m); that of silt and clay zones ranged from about 15 to 45 mS/m: and that of the more highly contaminated zones in sand and gravel ranged from about 10 to more than 80 mS/m. Specific conductance of water samples from screened intervals in sand and gravel at selected monitoring well installations was significantly correlated with KM conductivity.
CM logging can be used in glacial sand-and-gravel aquifer investigations to (1) determine optimum depths for the placement of monitoring well screens: (2) provide a nearly continuous vertical profile of specific conductance to complement depth-specific water quality samples; and (3) identify temporal changes in water quality through sequential logging. Detailed lithologic or gamma logs, preferably both, need to be collected along with the F.M logs to define zones in which elevated EM conductivity is caused by the presence of sill and clay beds rather than contamination.  相似文献   

8.
The vertical transport of contaminants from source areas is employed in many risk assessment models and screening tools in order to estimate the contaminant mass discharge (CMD) into underlying aquifers. The key parameters for estimating CMD are the contaminant source area and concentration, and the vertical water flux, the latter of which depends on the vertical hydraulic conductivity and the vertical hydraulic gradient in the subsurface. This study focuses on advancing the use of the combined membrane interface probe hydraulic profiling tool (MiHPT) to investigate the vertical hydraulic gradient across a clay till overlying a sandy aquifer at a contaminated site in Denmark. Only the HPT is necessary for the estimate of vertical hydraulic gradient. The hydraulic head, clay till thickness, and resulting vertical hydraulic gradients found using the MiHPT compared well with observations from nearby nested wells. The parameter with the largest discrepancy was the thickness of the clay till. The advantage of the MiHPT is its relatively quick depth discrete access to information regarding subsurface permeability, vertical hydraulic gradients and contaminant distribution across a site. In this case study, performance of additional dissipationtests during the HPT log to acquire determination of the vertical hydraulic gradient increased the cost by 3% compared to standard HPT logs.  相似文献   

9.
A direct-drive high-resolution passive profiler (HRPP) was developed to quantify and delineate concentrations of chlorinated volatile organic compounds (CVOCs), geochemical indicators and CVOC-degrading microorganisms/genes, as well as to perform compound-specific stable isotope analysis (CSIA) of CVOCs and estimate interstitial velocity at <30-cm resolution. The profilers can be coupled together to provide a continuous sample interval and advanced to depths up to approximately 9 m below-ground surface (bgs) within saturated media where direct-push techniques are feasible. The HRPP was field tested in a previous dense nonaqueous phase liquid (DNAPL) source zone at the former Naval Air Station in Alameda, CA. HRPP data sets were compared to the following traditional groundwater data sets: CVOC and anion concentrations in standard and multilevel monitoring well water samples, CVOC concentrations in soil core samples, qualitative contaminant profiles delineated with a membrane interface probe (MIP), microbial community and CSIA profiles from Bio-Traps® deployed in wells, groundwater velocity from passive flux meters (PFMs), lithologic profiles correlated with MIP electrical conductivity (EC), and velocity estimates based on permeability profiles measured with a Geoprobe hydraulic profiling tool (HPT). In some cases, the HRPP data were equivalent to traditional techniques and, in other cases, the HRPP data were more representative of local variability rather than bulk aquifer conditions. Overall the results support the use of the HRPP to provide high-resolution data on concentrations, velocity, and microbial activity in temporary direct-push deployments without well installation, providing a new tool to better assess source zones and contaminated groundwater plumes, even in low permeability media, and to increase the fidelity of site transport models.  相似文献   

10.
Groundwater flow and contaminant transport are strongly influenced by hydrogeological spatial variation. Understanding the textural heterogeneity of aquifer and aquitard units is critical for predicting preferential flow pathways, but is often hindered by sparse hydrogeological data, widely spaced data points, and complex stratigraphy. Here, we demonstrate the application of a relatively new air permeameter technology, providing a cost-effective, rapid alternative for characterizing hydrostratigraphic units in the field. The aim of this research is to (1) characterize the variation of saturated hydraulic conductivity across shallow-marine hydrostratigraphic units of the Whanganui Basin, New Zealand, and (2) assess the variation of saturated hydraulic conductivity within individual hydrostratigraphic units and relate these changes to facies and depositional environments. Results suggest heterogeneity within fine-grained aquitard units is controlled by bioturbation, whereby burrowing, ingestion and defecation results in grain size segregation and differential micrite cementation. Coarse-grained heterolithic aquifer facies display sharp changes in permeability across planar to cross-bedded sets, related to current and wave energy fluctuations within shallow-marine depositional settings. Bedding plane orientation creates high permeability zones that promotes down dip subsurface flow. Down dip gradation of coarse-grained nearshore facies into fine-grained shelf facies along the paleo shoreline-shelf transect is suggested to promote lateral and vertical groundwater flow within the basin fill. Air permeameter techniques have potential for application within groundwater basins around the world, providing datasets that facilitate greater understanding of groundwater systems, informing practices and policies for targeted water quality management.  相似文献   

11.
Signatures in flowing fluid electric conductivity logs   总被引:1,自引:0,他引:1  
Flowing fluid electric conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electric conductivity (FEC) logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers. The original analysis method was restricted to the case in which flows from the permeable layers or fractures were directed into the borehole (inflow). Recently, the method was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. A numerical model simulates flow and transport in the wellbore during flowing FEC logging, and fracture properties are determined by optimizing the match between simulation results and observed FEC logs. This can be a laborious trial-and-error procedure, especially when both inflow and outflow points are present. Improved analyses methods are needed. One possible tactic would be to develop an automated inverse method, but this paper takes a more elementary approach and focuses on identifying the signatures that various inflow and outflow features create in flowing FEC logs. The physical insight obtained provides a basis for more efficient analysis of these logs, both for the present trial and error approach and for a potential future automated inverse approach. Inflow points produce distinctive signatures in the FEC logs themselves, enabling the determination of location, inflow rate, and ion concentration. Identifying outflow locations and flow rates typically requires a more complicated integral method, which is also presented in this paper.  相似文献   

12.
Knowledge of site‐specific contaminant transport processes is an essential requirement for performing various tasks concerning the protection and management of groundwater resources. However, prediction of their behavior is often difficult, especially in heterogeneous aquifers because of the lack of information about flow‐ and transport‐governing subsurface structures and parameters. Hence, stochastic approaches have been developed and frequently used. However, extensive modeling studies on sedimentary structures have shown that consideration of hydrogeological subunits and their distribution can be essential for transport modeling. A case study from the intensely investigated Lauswiesen site is used to demonstrate that more accurate predictions are possible with improved knowledge of deterministic structures. Results of this case study using direct‐push injection logging (DPIL) provide a more reliable characterization of hydraulic conductivity than sieve and flow meter data.  相似文献   

13.
Ground-water monitoring to delineate a contaminant plume in fluvial hydrostratigraphic units often is uncertain. Fluvial deposits consist typically of interbedded layers of sands, silts and clays, with buried stream channel deposits of sands or gravels. The channel deposits are often interpreted erroneously to be discontinuous between test holes and in cross section due to their sinuosity. Erroneous conclusions pertaining to the areal continuity of these geometrically complex deposits are inevitable unless the investigator thoroughly understands the depositional environment(s). The hydraulic conductivity of buried stream channel deposits may be several orders of magnitude higher than the matrix materials in which they are enclosed. The higher hydraulic conductivity of buried stream channel deposits has potentially significant ramifications with respect to ground-water monitoring to delineate the geometry of a contaminant plume migrating through these deposits. Ground-water monitoring at uranium mill waste disposal sites located in fluvial environments began on a significant scale in about 1977. A uranium mill tailing disposal site located in such an environment in central Wyoming is among the first sites monitored. Thirty-seven monitor wells were constructed at the site to delineate a seepage plume originating from one of the tailing ponds. This case history illustrates the need for a detailed under—standing of the hydrostratigraphy at a waste disposal site in order to interpret the meaning of ground-water quality data effectively. Water quality data from monitor wells located on a hit or miss basis often are misleading. The hydrostratigraphic horizon from which a water quality sample is collected must be well defined before the sample analyses can be interpreted quantitatively.  相似文献   

14.
Ground water flow in karst terranes generally occurs in the solution channels of carbonate aquifers. A hydrogeologist may utilize borehole geophysical methods to identify these solution channels in aquifers. Two specific methods that are applicable in karst terrains are:
1. Natural gamma ray logging
2. Borehole caliper logging.
Gamma ray logging can detect the presence of inter-bedded strata in the main limestone unit, such as shale, which emit high levels of gamma radiation. Gamma ray logging can also detect clay deposits in solution channels that may act to restrict the flow of ground water. The areal extent of these rock strata or clay-filled solution channels can be determined when gamma ray logs are conducted at several borehole locations across the site of investigation.
Borehole caliper logging can be employed to determine the presences of solution channels within the aquifer when penetrated by a borehole. In addition, since shale layers and clay filling are less resistant than the surrounding limestone, the caliper log may detect both the presence and the thickness of shale or clay layers in the aquifer.
Gamma ray logs can be used in conjunction with caliper logs to provide data on the stratigraphic location and thickness of solution channels and clay and shale layers within a limestone aquifer. This information is valuable to the hydrogeologist performing investigations at sites located in limestone terranes because ground water flow preferentially occurs along solution channels.  相似文献   

15.
Electrical conductivity of alluvial sediments depends on litho‐textural properties, fluid saturation and porewater conductivity. Therefore, for hydrostratigraphic applications of direct current resistivity methods in porous sedimentary aquifers, it can be useful to characterize the prevailing mechanisms of electrical conduction (electrolytic or shale conduction) according to the litho‐textural properties and to the porewater characteristics. An experimental device and a measurement protocol were developed and applied to collect data on eight samples of alluvial sediments from the Po plain (Northern Italy), characterized by different grain‐size distribution, and fully saturated with porewater of variable conductivity. The bulk electrical conductivities obtained with the laboratory tests were interpreted with a classical two‐component model, which requires the identification of the intrinsic conductivity of clay particles and the effective porosity for each sample, and with a three‐component model. The latter is based on the two endmember mechanisms, surface and electrolytic conduction, but takes into account also the interaction between dissolved ions in the pores and the fluid‐grain interface. The experimental data and their interpretation with the phenomenological models show that the volumetric ratio between coarse and fine grains is a simple but effective parameter to determine the electrical behaviour of clastic hydrofacies at the scale of the representative elementary volume.  相似文献   

16.
Three methods for enhanced delivery of in situ remediation amendments in low-permeability deposits have been tested at a site in Denmark: pneumatic fracturing, direct-push delivery, and hydraulic fracturing. The testing was carried out at an uncontaminated part of a farm site, previously used for storage of chlorinated solvents, underlain by basal clay till with hydraulic conductivity ranging from 7.1× 10–11 to 3.5 × 10–7 m/s at testing depths 2.5 to 9.5 m b.s. Fluorescent tracers fluorescein and rhodamine WT were delivered. Tests of all three delivery methods have not been carried out at a single site before, and thus, this study provides unique data for comparison of enhanced delivery methods in both the vadose and saturated zone. Results show that pneumatic fracturing with nitrogen gas and propagation pressures of 1 to 9 bar had a distribution radius of less than 2 m, and produced dense networks of tracer-filled natural fractures above the redox boundary (0 to 3 m b.s.) and widely spaced, discrete, induced, tracer-filled subhorizontal fractures at depth (>3 m b.s.). Direct-push delivery at pressures of 8 to 30 bar had a distribution radius of approximately 1 m, distributed tracer primarily in natural fractures above the redox boundary and in discrete, closely spaced (but not merging) induced fractures below the redox boundary. Hydraulic fracturing with a sand-guar mixture at pressures of 0 to 6 bar produced an elliptical, asymmetrical, bowl-shaped fracture with a physical radius of approximately 3.5 m at 3 m b.s. The geometry of hydraulic fractures attempted emplaced at 6.5 and 9.5 m b.s. is uncertain, but clearly not horizontal as desired. The direct-push delivery method is robust and efficient for enhanced delivery at the clay till site in question, which based on thorough geological characterization is deemed a geologically representative basal clay till site.  相似文献   

17.
The primary objective of this study was to evaluate use of the hydraulic profiling tool‐groundwater sampler (HPT‐GWS) log data as an indicator of water quality (level of dissolved ionic species) in an alluvial aquifer. The HPT‐GWS probe is designed for direct push advancement into unconsolidated formations. The system provides both injection pressure logs and electrical conductivity (EC) logs, and groundwater may be sampled at multiple depths as the probe is advanced (profiling). The combination of these three capabilities in one probe has not previously been available. During field work it was observed that when HPT corrected pressure (Pc) indicates a consistent aquifer unit then bulk formation EC can be used as an indicator of water quality. A high correlation coefficient (R 2 = 0.93) was observed between groundwater specific conductance and bulk formation EC in the sands and gravels of the alluvial aquifer studied. These results indicate that groundwater specific conductance is exerting a controlling influence on the bulk formation EC of the coarse‐grained unit at this site, and probably many similar sites, consistent with Archie's Law. This simple relationship enables the use of the EC and Pc logs, with targeted water samples and a minimum of core samples, to rapidly assess groundwater quality over extended areas at high vertical resolution. This method was used to identify both a brine impacted zone at the base of the aquifer investigated and a groundwater recharge lens developing below storm water holding ponds in the upper portion of the same aquifer. Sample results for trace level, naturally occurring elements (As, Ba, U) further demonstrate the use of this system to sample for low level groundwater contamination.  相似文献   

18.
In situ treatment usually requires contact between an injected reagent and target contaminant to realize mass removal from source zones and plumes. Despite significant site characterization efforts, unknown heterogeneities that exist at all spatial scales often hinder prediction of the distribution of injected reagents. To provide remediation practitioners with additional information on the distribution of injected reagents, a prototype real-time monitoring probe was designed and tested. This new probe comprises a two-wire resistivity circuit, hence the designation dipole resistivity probe (DRP). The low-cost DRPs were built to be attached as arrays to a central stalk, and installed by direct-push techniques. An installed network of multilevel DRPs can be used to detect the arrival, persistence, and relative concentration of a high-conductivity reagent solution in real-time across a zone of interest. Static cell and sandbox experiments were conducted to test and refine the DRP design before field testing. Static cell experimental results indicated that the DRP was sensitive to solution electrical conductivity (EC), and that the probe response and EC relationship is nonlinear and dependent on the fixed resistor used. The choice of fixed resistor can be adjusted to optimize the DRP response over a critical EC range of interest. Under dynamic conditions in the sandbox, the DRP was able to reproduce breakthrough profiles collected by a commercial EC sensor. The results from two field studies demonstrated the utility of the DRPs to generate information regarding the arrival and persistence of reagents in an efficient and cost-effective manner. The first field study used a network of DRPs to monitor the land application of a sodium sulfate solution, and the second field study employed DRPs to monitor the distribution and longevity of a persulfate solution. While additional field testing is warranted, the results presented are encouraging and suggest that this low-cost system can be used to improve our understanding of the detailed migration of injected reagents in treatment zones.  相似文献   

19.
Numerical hydrogeological models should ideally be based on the spatial distribution of hydraulic conductivity (K), a property rarely defined on the basis of sufficient data due to the lack of efficient characterization methods. Electromagnetic borehole flowmeter measurements during pumping in uncased wells can effectively provide a continuous vertical distribution of K in consolidated rocks. However, relatively few studies have used the flowmeter in screened wells penetrating unconsolidated aquifers, and tests conducted in gravel-packed wells have shown that flowmeter data may yield misleading results. This paper describes the practical application of flowmeter profiles in direct-push wells to measure K and delineate hydrofacies in heterogeneous unconsolidated aquifers having low-to-moderate K (10(-6) to 10(-4) m/s). The effect of direct-push well installation on K measurements in unconsolidated deposits is first assessed based on the previous work indicating that such installations minimize disturbance to the aquifer fabric. The installation and development of long-screen wells are then used in a case study validating K profiles from flowmeter tests at high-resolution intervals (15 cm) with K profiles derived from multilevel slug tests between packers at identical intervals. For 119 intervals tested in five different wells, the difference in log K values obtained from the two methods is consistently below 10%. Finally, a graphical approach to the interpretation of flowmeter profiles is proposed to delineate intervals corresponding to distinct hydrofacies, thus providing a method whereby both the scale and magnitude of K contrasts in heterogeneous unconsolidated aquifers may be represented.  相似文献   

20.
A small‐diameter nuclear magnetic resonance (NMR) logging tool has been developed and field tested at various sites in the United States and Australia. A novel design approach has produced relatively inexpensive, small‐diameter probes that can be run in open or PVC‐cased boreholes as small as 2 inches in diameter. The complete system, including surface electronics and various downhole probes, has been successfully tested in small‐diameter monitoring wells in a range of hydrogeological settings. A variant of the probe that can be deployed by a direct‐push machine has also been developed and tested in the field. The new NMR logging tool provides reliable, direct, and high‐resolution information that is of importance for groundwater studies. Specifically, the technology provides direct measurement of total water content (total porosity in the saturated zone or moisture content in the unsaturated zone), and estimates of relative pore‐size distribution (bound vs. mobile water content) and hydraulic conductivity. The NMR measurements show good agreement with ancillary data from lithologic logs, geophysical logs, and hydrogeologic measurements, and provide valuable information for groundwater investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号