首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
《Gondwana Research》2014,25(2):561-584
The aim of this paper is to review the main features of the Meso-Neoarchaean Belomorian eclogite province (BEP) in the northeastern Fennoscandian Shield, including regional and local geology, geochemistry, petrology and geochronology and to compare the Belomorian eclogites with Precambrian eclogites elsewhere. Two eclogite associations have been recognized within Belomorian TTG gneisses: (1) the subduction-type Salma association and (2) Gridino eclogitized mafic dykes. Protoliths of the Salma eclogites represent a sequence comprising gabbro, Fe–Ti gabbro and troctolites, formed at ~ 2.9 Ga in a slow-spreading ridge setting (like the Southwest Indian Ridge). The main subduction and eclogite-facies events occurred between ~ 2.87 and ~ 2.82 Ga. Injection of mafic magma into an active continental margin setting, recorded by the Gridino dyke swarm, is attributed to subduction of a mid-ocean ridge, commencing at 2.87 Ga. Crustal delamination of the active margin and subsequent involvement of the lower crust in subduction between 2.87 and 2.82 Ga ago caused high-pressure metamorphism of the Gridino dykes, culminating in eclogite-facies conditions between 2.82 and 2.78 Ga and accompanying amalgamation of the Karelia, Kola and Khetolamba blocks and formation of the Mesoarchaean Belomorian accretionary–collisional orogen. The clockwise PT paths of the Salma and Gridino associations cross the granulite-facies PT field. Detailed metamorphic studies indicate a complicated post-eclogite history with thermal events and fluid infiltration, related to plume activity at 2.72–2.70, ~ 2.4 and ~ 1.9 Ga. The eclogite assemblages were exhumed to mid-to-lower crustal depths at ~ 1.7 Ga, while erosion or younger tectonic events were responsible for final exhumation to the surface. Comparison of PTt paths and data for peak metamorphic parameters demonstrates the general similarity of the Archaean and Palaeoproterozoic eclogites worldwide and their association with anomalously “hot” environments. The occurrence of high-T conditions during eclogite-facies metamorphism can be attributed to either subduction of a mid-ocean ridge (Archaean, BEP) or to interaction with mantle plumes (Proterozoic).  相似文献   

2.
Within the Belomorian eclogite province, near Gridino Village, rocks of different compositions (tonalite-trondhjemite-granodioritic gneisses, granites, mafic and ultramafic rocks) were metamorphosed. The metamorphism included subsidence with increasing pressure and temperature, an eclogite stage, decompression in the granulitic facies, and a retrograde stage in the amphibolitic facies. We attempted to characterize the succession and to date igneous and metamorphic events in the evolution of the Gridino eclogite association. For this purpose, we conducted the following studies: U–Pb isotope dating of zircon (conventional and SHRIMP II methods) from gneisses, a mafic dike, and a high-pressure granitic leucosome; U–Pb dating of rutile from mafic dikes; 40Ar/39Ar dating of amphibole and mica; and Sm–Nd studies of rocks and minerals. The Sm–Nd model ages of felsic (2.9–3.1 Ga) and mafic (3.0–3.4 Ga) rocks from the Gridino eclogite association and individual magmatic zircon grains with an age of ca. 3.0 Ga indicate the Mesoarchean age of the metamorphic-rock protoliths. The most reliable result is the upper age bound of eclogitic metamorphism (2.71 Ga), which reflects the time of the posteclogitic decompression melting of eclogitized rocks under high-pressure retrograde granulitic metamorphism. The mafic dikes formed from 2.82 Ga to 2.72 Ga, most probably, at 2.82 Ga, in accordance with the crystallization age of magmatic zircon from metagabbro. Superimposed amphibolitic metamorphism and the “final” exhumation of metamorphic complexes at 2.0–1.9 Ga are associated with the later Svecofennian tectonometamorphic stage. Successive cooling of the metamorphic associations to 300 °C at 1.9–1.7 Ga is shown by U–Pb rutile dating and 40Ar/39Ar mica dating.  相似文献   

3.
Archean processes of eclogitization in the Gridino metamorphic association (the Belomorian eclogite province) developed in mafic dykes, boudins, and acidic rocks of the Archean continental crusts. To determine the U-Pb age of the intrusion of the latest dykes, the geochronological samples were taken from the dyke of ferriferious metagabbro that cross-cuts the dyke of eclogitzed and granulitized olivine gabbronorite. The igneous zircons were dated by the SHRIMP II technique. The zircons showed a concordia age of 2846 ± 7 Ma, which is considered as the time of intrusion of a mafic melt. The younger low-thorium zircon rims of 2.78–2.81 Ga age around the igneous cores are typical formations that appeared under metamorphic conditions in equilibrium with a migmatite melt, and may characterize the time of formation of the granite leucosome under metamorphism, probably of eclogite facies.  相似文献   

4.
We investigated several mineral phases and their replacement products which occur as inclusions in garnets from felsic and mafic granulites of the Gföhl Unit in the Moldanubian Zone. The most important mineral inclusions, Ti-rich muscovite and omphacite, were used for the reconstruction of the metamorphic history of granulites. Some inclusions were transformed during high-temperature granulite facies metamorphism, partial melting and decompression to other phases, and so the original mineral can only be deduced from the inclusion morphology and reaction products. These inclusions have columnar shapes and consist of K-feldspar + kaolinite, albite + Fe-oxide, plagioclase + Fe-oxide, or albite + K-feldspar, respectively. The pseudomorphs with albite/plagioclase occur in a Ca-rich garnet that shows prograde zoning. Pressure–temperature (PT) evolution, derived from mineral assemblages in granulite and based on the inclusions, suggests a prograde metamorphism from amphibolite through eclogite to granulite facies conditions with subsequent amphibolite facies overprint during exhumation. The estimated PT trajectory for the studied granulites, which also host lenses or boudins of eclogites and garnet peridotites, allows reconstruction of the complete clockwise metamorphic path that is consistent with subduction geotherm prior to the tectonic amalgamation within the continental collisional root.  相似文献   

5.
俄罗斯白海活动带中的太古宙榴辉岩   总被引:1,自引:0,他引:1  
在俄罗斯白海活动区发现的迄今为止最古老的太古宙榴辉岩的出露,对整个地质学领域是一次革命性事件。白海活动带位于芬诺斯干地亚地盾东北部太古宙陆核,处于科拉半岛大陆和卡累利阿克拉通之间的太古宙增生碰撞带中,在新太古代和古元古代期间多次受到中高压变质和构造变形作用。榴辉岩出露包括Gridino和Salma两大地区。Gridino榴辉岩区的榴辉岩产状可分为TTG片麻岩围岩中具有复杂成因的太古宙榴辉岩包裹镶体(2.72 Ga),组成强烈构造变形的混合混杂岩体(mélange),以及众多古元古代侵入岩墙岩脉状基性榴辉岩。Salma榴辉岩区的榴辉岩年龄应该晚于2.87 Ga,其中的Fe Ti 榴辉岩年龄测定为约2.80 Ga。两大榴辉岩区的p T演化轨迹比较类似,Gridino榴辉岩的峰期变质温压值(T=740~865 ℃,p=1.4~1.8 GPa)比Salma榴辉岩(T≈700 ℃,p=1.3~1.4 GPa)要高。Salma榴辉岩原岩可能与大洋环境有关。  相似文献   

6.
The high-grade metamorphic terrane in the Badu region along the northeastern Cathaysia Block in South China preserves retrograded eclogites and mafic granulites. Here we present the petrology, mineral phase equilibria and P-T conditions based on pseudosection computations, as well as zircon U-Pb ages of these rocks. Mineral textures and reaction relationships suggest four metamorphic stages for the retrograded eclogite as follows: (1) eclogite facies stage (M1), (2) clinopyroxene retrograde stage (M2), (3) amphibole retrograde stage (M3), and (4) chlorite retrograde stage (M4). For the mafic granulite, three stages are identified as: (1) plagioclase-absent stage (M1), (2) granulite facies stage (M2) and (3) amphibolite facies stage (M3). Metamorphic evolution of both of the rock types follows clockwise P-T path. Conventional geothermometers and geobarometers in combination with phase equilibria modelling yield metamorphic P-T conditions for each metamorphic stage for the eclogite as 500–560 °C, 23–24 kbar (M1), 640–660 °C, 14–16 kbar (M2), 730–750 °C, and 11–13 kbar (M3). The chlorite retrograde stage (M4) is inferred to have occurred at lower amphibolite to greenschist facies conditions. Phase equilibria modelling of the mafic granulite shows P-T conditions for each metamorphic stage as 600–720 °C, > 13 kbar (M1) and 860–890 °C, 5–6 kbar (M2) and M3 at amphibolite facies conditions. LA-ICPMS zircon U-Pb dating and trace element analysis show that the high pressure metamorphism occurred at 245–251 Ma. Protolith age of the mafic granulite is 997 Ma, similar to that of the mafic to ultramafic rocks widely distributed in the Cathaysia Block and also along the Jiangnan belt. Subduction of ancient oceanic lithospheric materials (or crustal thickening) during Mesozoic and formation of eclogites suggest that the Cathaysia Block was perhaps in the Tethyan oceanic domain at this time. The granulite formation might have been aided by Mesozoic mafic magma underplating associated with lithospheric delamination, heating and retrogression of the eclogite accompanied by rapid uplift.  相似文献   

7.
Although eclogites in the Belomorian Province have been regarded as Archean in age and among the oldest in the world, there are also multiple studies that have proposed a Paleoproterozoic age. Here, we present new data for the Gridino‐type eclogites, which occur as boudins and metamorphosed dykes within tonalite–trondhjemite–granodiorite gneisses. Zircon from these eclogites has core and rim structures. The cores display high Th/U ratios (0.18–0.45), negative Eu anomalies and strong enrichment in HREE, and have Neoarchean U–Pb ages of c. 2.70 Ga; they are interpreted to be magmatic in origin. Zircon cores have δ18O of 5.64–6.07‰ suggesting the possibility of crystallization from evolved mantle‐derived magmas. In contrast, the rims, which include the eclogite facies minerals omphacite and garnet, are characterized by low Th/U ratios (<0.035) and flat HREE patterns, and yield U–Pb ages of c. 1.90 Ga; they are interpreted to be metamorphic in origin. Zircon rims have elevated δ18O of 6.23–6.80‰, which was acquired during eclogite facies metamorphism. Based on petrography and phase equilibria modelling, we recognize a prograde epidote amphibolite facies mineral assemblage, the peak eclogite facies mineral assemblage and a retrograde high‐P amphibolite facies mineral assemblage. The peak metamorphic conditions of 695–755°C at >18 kbar for the Gridino‐type eclogites suggest an apparent thermal gradient of <39–42°C/kbar for the Lapland–Kola collisional orogeny.  相似文献   

8.
We present results of study of mineral assemblages and PT-conditions of metamorphism of mafic garnet–two-pyroxene and two-pyroxene granulites in the Early Precambrian metamorphic complex of the Angara–Kan terrane as well as the U–Pb age and trace-element and Lu–Hf isotope compositions of zircon from these rocks and the zircon/garnet REE distribution coefficients. The temperatures of metamorphism of two-pyroxene granulites are estimated as 800–870 to ~ 900 °C. Mafic garnet–two-pyroxene granulites contain garnet coronas formed at 750–860 °C and 8–9.5 kbar. The formation of the garnet coronas proceeded probably at the retrograde stage during cooling and was controlled by the rock composition. The age (1.92–1.94 Ga) of zircon cores, which retain the REE pattern typical of magmatic zircon, can be taken as the minimum age of protolith for the mafic granulites. The metamorphic zircon generation in the mafic granulites is represented by multifaceted or soccerball crystals and rims depleted in Y, MREE, and HREE compared to the cores. The age of metamorphic zircon in the garnet–two-pyroxene (~ 1.77 Ga) and two-pyroxene granulites (~ 1.85 and 1.78 Ga) indicates two episodes of high-temperature metamorphism. The presence of one generation (1.77 Ga) of metamorphic zircon in the garnet–two-pyroxene granulites and, on the contrary, the predominance of 1.85 Ga zircon in the two-pyroxene granulites with single garnet grains suggest that the formation of the garnet coronas proceeded at the second stage of metamorphism. The agreement between the zircon/garnet HREE distribution coefficients and the experimentally determined values at 800 °C suggests the simultaneous formation of ~ 1.77 Ga metamorphic zircon and garnet. Zircon formation by dissolution/reprecipitation or recrystallization in a closed system without exchange with the rock matrix is confirmed by the close ranges of 176Hf/177Hf values for the core and rims. The positive εHf values (up to + 6.2) for the zircon cores suggest that the protolith of mafic granulites are derived from depleted-mantle source. The first stage of metamorphism of the mafic granulites and paragneisses of the Kan complex (1.85–1.89 Ga) ended with the formation of collisional granitoids (1.84 Ga). The second stage (~ 1.77 Ga) corresponds to the intrusion of the second phase of subalkalic leucogranites of the Taraka pluton and charnockites (1.73–1.75 Ga).  相似文献   

9.
The Eastern Ghats Frontal Thrust (EGFT) demarcates the boundary between the Archaean/Paleoproterozoic cratonic rocks to the west, and the Meso/Neoproterozoic granulites of the Eastern Ghats Mobile Belt (EGMB) to the east. At Jeypore (Orissa, India), mafic schists and granites of the cratonic domain document a spatial increase in the metamorphic grade from greenschist facies (garnet, clinozoisite – absent varieties) in the foreland to amphibolite facies (clinozoisite- and garnet-bearing variants) progressively closer to the EGFT. Across the EGFT, the enderbite–charnockite gneisses and mafic granulites of EGMB preserves a high-grade granulite facies history; amphibolite facies overprinting in the enderbite–charnockite gneisses at the cratonic fringe is restricted to multi-layered growth of progressively Al, Ti – poor hornblende at the expense of pyroxene and plagioclase. In associated mafic granulites, the granulite facies gneissic layering is truncated by sub-centimeter wide shear bands defined by synkinematic hornblende + quartz intergrowth, with post-kinematic garnet stabilized at the expense of hornblende and plagioclase. Proximal to the contact, these granulites of the Eastern Ghats rocks are intruded by dolerite dykes. In the metadolerites, the igneous assemblage of pyroxene–plagioclase is replaced by intergrown hornblende + quartz ± calcite that define the thrust-related fabric and are in turn mantled by coronal garnet overgrowth, while scapolite is stabilized at the expense of recrystallized plagioclase and calcite. Petrogenetic grid considerations and thermobarometry of the metamorphic assemblages in metadolerites intrusive into granulites and mafic schists within the craton confirm that the rocks across the EGFT experienced prograde heating (Tmax value ∼650–700 °C at P  6–8 kbar) along the prograde arm of a seemingly clockwise PT path. Since the dolerites were emplaced post-dating the granulite facies metamorphism, the prograde heating is correlated with renewed metamorphism of the granulites proximal to the EGFT. A review of available age data from rocks neighboring the EGFT suggests that the prograde heating of the cratonic granites and the re-heating of the Eastern Ghats granulites are Pan – African in age. The re-heating may relate to an Early Paleozoic Pan-Gondwanic crustal amalgamation of older terrains or reactivation along an old suture.  相似文献   

10.
Combined geological, geochronological, geochemical and geophysical studies have led to identification of a large (∼300 km long, ∼5 km wide) N–S trending belt of metagabbros in the province of La Pampa, south-central Argentina. This belt, though only poorly exposed in the localities of Valle Daza and Sierra de Lonco Vaca, stands out in the geophysical data (aeromagnetics and gravity). Modeling of the aeromagnetic data permits estimation of the geometry of the belt of metagabbros and surrounding rocks.The main rock type exposed is metagabbros with relict magmatic nucleii where layering is preserved. A counterclockwise P–T evolution affected these rocks, i.e., during the Middle Ordovician the protolith reached an initial granulite facies of metamorphism (M1), evolving to amphibolite facies (M2). During the Upper Devonian, a retrograde, greenschist facies metamorphism (M3) partially affected the metagabbros.The whole-rock Sm–Nd data suggest a juvenile source from a depleted mantle, with model ages ranging from 552 to 574 Ma, and positive Epsilon values of 6.51–6.82. A crystallization age of 480 Ma is based on geological considerations, i.e. geochronological data of the host rocks as well as comparisons with the Las Aguilas mafic–ultramafic belt of Sierra de San Luis (central Argentina).The geochemical studies indicate an enriched MORB and back-arc signature.The La Pampa metagabbros are interpreted to be originated as a result of the extension that took place in a back-arc setting coevally with the Famatinian magmatic arc (very poorly exposed in the western part of the study area). The extensional event was ´aborted´ by the collision of the Cuyania terrane with Pampia-Gondwana in the Middle Ordovician, causing deformation and metamorphism throughout the arc–back-arc region.The similarities between the La Pampa metagabbros and the mafic–ultramafic Las Aguilas belt of the Sierra de San Luis are very conspicuous, for example, the age (Lower Paleozoic), geochemical signature and timing of metamorphism (dated at ca. 465 Ma in the study area), which allow definition of a single, mafic back-arc belt in central Argentina, from San Luis to La Pampa.  相似文献   

11.
Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10–11 kbar and 450–650 °C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 °C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic–ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, lherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24–22 kbar and 1060–1040 °C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm–Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic–ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite–trondhjemite–granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a > 90 km × 40 km-size slab of continental crust containing mafic–ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic–ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean.  相似文献   

12.
The Garevka metamorphic complex (GMC), located at the junction of the Central Angara and Isakovka terranes (western part of the Transangarian Yenisei Ridge), was studied in terms of its tectonometamorphic evolution and geodynamic processes in the Neoproterozoic history of the region. Geological, structural, geochronological, and petrological data permitted the recognition of two stages in the GMC evolution, which differ in thermodynamic regimes and metamorphic field gradients. These stages were related to crustal contraction and extension within the Yenisei regional shear zone, a large lineament structure in the region. Stage 1 was marked by the formation of metamorphic complexes in the middle to upper amphibolite facies moderate-pressure regional metamorphic settings at ~ 960 Ma, P = 7.7–8.6 kbar, and T = 582–631 °C. This suggests subsidence of the area to the middle continental crust with dT/dH = 20–25 °C/km. During stage 2, the rocks experienced Late Riphean (~ 880 Ma, SHRIMP II U–Pb and 40Ar–39Ar dating) dynamic metamorphism under epidote-amphibolite facies conditions (P = 3.9–4.9 kbar; T = 461–547 °C), indicating a metamorphic field gradient of dT/dH no greater than 10 °C/km, with the formation of blastomylonites in narrow zones of ductile and brittle deformations. In these zones, high-grade GMC blocks were exhumed to the upper continental crust and underwent low-temperature metamorphism. Comparison of the structural, geologic, and other evolutionary features (nearly identical age constraints in view of exhumation rate, similar PT-paths, and different types of metamorphism associated with different geodynamic settings, etc.) of the Garevka and Teya complexes suggests that they constitute a single polymetamorphic complex.  相似文献   

13.
The late Carboniferous accretionary system of the South Tianshan orogen (North-Western China) underwent complex structural and polymetamorphic evolution. Combined petrological, geochronological and microstructural analysis of (ultra)high-pressure (UHP) metabasites (eclogites and blueschists) enclosed in metapelites show a relict coarse-grained eclogitic fabric S2 surrounded by a dominant fine-grained eclogite and blueschist facies retrograde fabric S2. The S2 fabric is reworked by upright folds F3 that are responsible for a major shortening of the whole accretionary system. For both the eclogite and blueschist, peak and retrograde PT conditions have been thermodynamically constrained at 25–26 kbar and 425–500 °C and 10–13 kbar and 500−550 °C respectively, suggesting a shared exhumation history. The garnet-whole rock-amphibole isochron in the blueschist yielded Lu–Hf and Sm–Nd ages of 326.0 ± 2.9 Ma and 318.4 ± 3.9 Ma respectively, interpreted to date the prograde to peak metamorphic assemblage. The retrograde path of the eclogite is characterized by heterogeneous omphacite recrystallization into a mylonitic fine-grained matrix and crystallization of blue amphibole. Microstructures in both pristine porphyroclastic and recrystallized fine-grained domains in the eclogite indicate a gradual evolution from constriction-dominated (L>S-type) to flattening-dominated (S>L-type) type of deformation, increase of fabric intensity reflected by gradually growing M-indexes and the development of lattice preferred orientation (LPO) typical for dislocation creep under slightly hydrated conditions. Recrystallization of the matrix in the blueschist is homogeneous, which indicates a matrix dominated channel flow during exhumation. These LPOs evolutions suggest a significant mechanical coupling with the upper plate concomitant with oroclinal bending of the Kazakh orocline. Lock up of Kazakh orocline is responsible for further stress increase resulting in horizontal shortening of South Tianshan accretionary wedge and development of D3 upright folding and steepening of the whole sequence.  相似文献   

14.
In most of the rocks of the Fuping Complex in the Trans-North China Orogen, a large quantity of leucocratic veins, dykes and granitic intrusions are present as migmatites. The incongruent partial melting of biotite to hornblende suggests the water-fluxed anatexis of the migmatization of which the melt is manifested by the euhedral crystallization of some quartzofeldspathic minerals and presence of albite rim on earlier plagioclase or K-feldspar. Importantly, some melt may be segregated in the sillimanite gneisses or extracted and injected as faint dispersed melt into the competent metasedimentary quartzite of the Wanzi series rocks. The quartzite has plenty of zircon ages cluster at c 2.5 Ga and some at c 2.1–2.0 Ga, the former may be detrital zircon age, while the latter represents the age of migmatization or crystallization of the injected melt, not detrital zircon ages as conventionally believed. The data have constrained that the sedimentation time of the protolith of the quartzite of the Wanzi series was between c 2.5 Ga and c 2.1–2.0 Ga, not younger than c 2.1–2.0 Ga as once proposed. Therefore it must be cautious in applying detrital zircon ages in constraining the time of sedimentation if the rocks have undergone middle-high grade metamorphism, especially when migmatization was involved in the metamorphism process.  相似文献   

15.
We report field relationships, petrography and isotopic ages from two superposed basement units of the Kabul Block, the so called Lower Sherdarwaza and Upper Welayati formations. The Sherdarwaza Formation is represented mostly by migmatites and gneisses that are derived from pelitic and psammitic lithologies with lenses and layers of mafic and carbonate rocks. Several bodies of orthogneisses are also exposed in the Sherdarwaza Formation. The Upper Welayati Formation is characterized by micaschist, quartzite and amphibolites. SHRIMP U–Pb data on zircon from the orthogneiss in the Sherdarwaza Formation indicates a Neoarchean age of ca 2.5–2.8 Ga for their magmatic crystallization. The rocks exhibit granulite facies conditions of 5–7 kbar and 800 °C that are documented by the presence of orthopyroxene and Ti-rich biotite in the orthogneiss and by olivine and phlogopite in some calc-silicate rocks at contact with marble. A Paleoproterozoic age of ca. 1.85–1.80 Ga for this metamorphism was obtained using U-Pb SHRIMP dating on zircon and U-Th dating on monazite. Mineral textural relations also show a younger amphibolite facies metamorphism that is documented in both the Sherdarwaza and Welayati formations. This metamorphism occurred at relatively higher pressure conditions of up to 9 kbar at ca. 650 °C, compared to the granulite facies event. A Neoproterozoic age of ca 0.85–0.9 Ga, for this metamorphism is confirmed by Ar-Ar data on biotite and white mica as well as by U-Th data on monazite. By combining the presented results on the metamorphic petrology, geochronology and geochemistry, we conclude that: (1) The Kabul basement is a fragment of an Archean block (craton); (2) the ca. 1.85–1.8 and 0.9–0.85 Ga metamorphism marks an important orogenic events for the basement rocks of the Kabul Block which was stabilized during the early Precambrian; (3) the two metamorphic ages correlate well with global-scale orogenies related to the assembly of the Paleoproterozoic Columbia and Neoproterozoic Rodinia supercontinents; (4) based on metamorphic characteristics and ages, the Kabul basement rocks show an affinity to the Neoarchean rocks of the Tarim and/or South China cratons.  相似文献   

16.
The Shirokaya Salma eclogite‐bearing complex is located in the Archean–Palaeoproterozoic Belomorian Province (Russia). Its eclogites and eclogitic rocks show multiple clinopyroxene breakdown textures, characterized by quartz–amphibole, orthopyroxene and plagioclase lamellae. Representative samples, a fresh eclogite, two partly retrograded eclogites, and a strongly retrograded eclogitic rock, were collected for this study. Two distinct mineral assemblages—(1) omphacite+garnet+quartz+rutile±amphibole and (2) clinopyroxene+garnet+amphibole+plagioclase+quartz+rutile+ilmenite±orthopyroxene—are described. Based on phase equilibria modelling, these assemblages correspond to the eclogite and granulite facies metamorphism that occurred at 16–18 kbar, 750–800°C and 11–15 kbar, 820–850°C, respectively. The quartz–amphibole lamellae in clinopyroxene formed during retrogression with water ingress, but do not imply UHP metamorphism. The superfine orthopyroxene lamellae developed due to breakdown of an antecedent clinopyroxene (omphacite) during retrogression that was triggered by decompression from the peak of metamorphism, while the coarser orthopyroxene grains and rods formed afterwards. The P–T path reconstructed for the Shirokaya Salma eclogites is comparable to that of the adjacent 1.9 Ga Uzkaya Salma eclogite (Belomorian Province), and those of several other Palaeoproterozoic high‐grade metamorphic terranes worldwide, facts allowing us to debate the exact timing of eclogite facies metamorphism in the Belomorian Province.  相似文献   

17.
《Precambrian Research》2005,136(1):67-106
A new lithotectonic framework for the northwestern Reindeer Zone of the Trans-Hudson Orogen divides rocks into five northwest- to north-dipping volcano-sedimentary assemblages: (1) at the structural base, the 1.92–1.87 Ga largely sedimentary Levesque Bay Assemblage (partly equivalent to former ‘MacLean Lake gneisses’), which lies within the confines of the Kisseynew Domain and is tectonically imbricated with metasedimentary rocks of the <1.85 Ga McLennan and Burntwood groups; (2) the turbiditic Duck Lake Assemblage, also located along the northern edge of the Kisseynew Domain; it contains detrital zircons ranging in age between 1.92 and 1.87 Ga; (3) the ?1.92 Ga mafic–ultramafic volcano-plutonic Lawrence Point Assemblage of the La Ronge Domain; (4) the ≥1.88 Ga felsic to intermediate volcano-plutonic Reed Lake Assemblage of the La Ronge Domain; and (5) the turbiditic Milton Island Assemblage of the Rottenstone Domain, which contains detrital zircons ranging in age between 2.83 and 1.86 Ga. The assemblages are intruded by a variety of 1.91–1.78 Ga mafic to felsic plutons.The Lawrence Point Assemblage is interpreted as a dismembered supra-subduction zone ophiolite. High-MgO refractory harzburgite (‘Group 1’ ultramafic rocks), at the structural base of the assemblage, is geochemically identical to the upper mantle section of selected supra-subduction zone ophiolites and mantle tectonites. Chromite and olivine compositions of the ‘Group 1’ ultramafic rocks are also comparable to those of ophiolitic harzburgite and mantle tectonite. Mafic metavolcanic rocks of the assemblage are classified as subalkaline tholeiitic basalts. Their trace element patterns and Hf, Ta, Th, Y, Nb, and La element ratios resemble those of modern back-arc basin basalts. The Reed Lake Assemblage represents a subduction-generated arc complex that was built on top of the Lawrence Point Assemblage; its mafic metavolcanic rocks are subalkaline basalts, with calc-alkaline trends, and elevated Th and Ce concentrations and negative Nb anomalies. Feldspar porphyry dykes intruding the Lawrence Point and Duck Lake assemblages constrain timing of Lawrence Point ophiolite emplacement onto the Duck Lake Assemblage to 1.86–1.84 Ga. The trace element geochemistry of the dykes suggests continued arc volcanism after ophiolite emplacement. Mafic metavolcanic rocks of the Levesque Bay Assemblage are geochemically similar to those of the Lawrence Point Assemblage. Other ultramafic rocks (peridotite to pyroxenite) are abundant in the Lawrence Point Assemblage, but have similar geochemistry to small ultramafic bodies intruding the Reed Lake, Duck Lake and Levesque Bay Assemblages. They represent a separate, later phase (?1.86 Ga) of ultramafic plutonism, which post-dates ophiolite emplacement.Timing of Lawrence Point ophiolite emplacement (between 1.86 and 1.84 Ga) and geochemistry of later felsic and mafic/ultramafic volcanism suggest that the Lawrence Point ophiolite and overlying Reed Lake arc assemblage were not accreted to the Hearne Craton prior to 1.86 Ga, but were first accreted to the Flin Flon–Glennie Complex after 1.86 Ga.  相似文献   

18.
The Bajgan Complex, one of the basement constituents of the arc massif in Iranian Makran forms a rugged, deeply incised terrain. The complex consists of pelitic schists with minor psammitic and basic schists, calc silicate rocks, amphibolites, marbles, metavolcanosediments, mafic and felsic intrusives as well as ultramafic rocks. Metapelitic rocks show an amphibolite facies regional metamorphism and contain garnet, biotite, white mica, quartz, albite ± rutile ± apatite. Thermobarometry of garnet schist yields pressure of more than 9 kbar and temperatures between 560 and 675 °C. The geothermal gradient obtained for the peak of regional metamorphism is 19 °C/km, corresponding to a depth of ca. 31 km. Replacement of garnet by chlorite and epidote suggest greenschist facies metamorphism due to a decrease in temperature and pressure through exhumation and retrograde metamorphism (370–450 °C and 3–6 kbar). The metapelitic rocks followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal decline following tectonic thickening. The formation of medium-pressure metamorphic rocks is related to presence of active subduction of the Neotethys Oceanic lithosphere beneath Eurasia in the Makran.  相似文献   

19.
Published literature argues that the Limpopo Belt can be subdivided into three zones, each with a distinctive geological character and tectono-metamorphic fingerprint. There are currently two contrasting schools of thought regarding the tectono-metamorphic evolution of the CZ. One camp argues that geochronological, structural and prograde pressure–temperature (PT) evidence collectively indicate that the CZ underwent tectono-metamorphism at ca. 2.0 Ga which followed a clockwise PT evolution during a transpressive orogeny that was initiated by the collision of the Kaapvaal and Zimbabwe cratons. Deformation and metamorphism consistent with this scenario are observed in the southern part of the NMZ but are curiously absent from the whole of the SMZ. The opposing view argues that the peak metamorphism associated with the collision of the Kaapvaal and Zimbabwe cratons occurred at ca. 2.6 Ga and the later metamorphic event is an overprint associated with reactivation along Archean shear zones. Post-peak-metamorphic conditions, which at present cannot be convincingly related to either a ca. 2.6 or 2.0 Ga event in the CZ reveal contrasting retrograde paths implying either near-isothermal decompression and isobaric cooling associated with a ‘pop-up’ style of exhumation or steady decompression–cooling linked to exhumation controlled by erosion. Recent data argue that the prograde evolution of the ca. 2.0 Ga event is characterised by isobaric heating prior to decompression–cooling. Contrasting PT paths indicate that either different units exist within the CZ that underwent different PT evolutions or that some PT work is erroneous due to the application of equilibrium thermobarometry to mineral assemblages that are not in equilibrium. The morphology of the PT path(s) for the ca. 2.6–2.52 Ga event are also a matter of dispute. Some workers have postulated an anticlockwise PT evolution during this period whilst others regard this metamorphic event as following a clockwise evolution. Granitoid magmatism is broadly contemporaneous in all three zones at ca. 2.7–2.5 suggesting a possible causal geodynamic link. PT contrasts between and within the respective zones prevent, at present, the construction of a coherent and inter-related tectonic model that can account for all of the available evidence. Detailed and fully-integrated petrological and geochronological studies are required to produce reliable PTt paths that may resolve some of these pertinent issues.  相似文献   

20.
The Paleoproterozoic cover sequence at the 100–150 km wide western margin of the Archean Karelian Province is dominated by deep water Lower and Upper Kaleva metasediments. We present here an interpretation of Sm–Nd isotope and geochemical data on 36 samples, TIMS multi-grain U–Pb zircon analyses on nine samples, and ca. 100 SIMS analysis of detrital zircon grains from four Upper Kaleva and one Lower Kaleva samples.The Lower Kaleva is characterized by autochthonous–parautochthonous, lithologically heterogeneous metaturbidites showing common enrichment in quartz. All the analysed detrital zircons are of a local Neoarchean source but tDM variation up to 2.4 Ga combined with geochemical data indicate abundant mixing of Paleoproterozoic mafic material, presumably from 2.1 Ga plateau lavas and dykes, in most of the Lower Kaleva samples.The Upper Kaleva is dominantly allochthonous with tectonically enclosed fragments of ophiolite bodies, and it is characterized by lithological and geochemical-isotopic homogeneity. Geochemical, isotopic and detrital zircon data favour material derived from an orogenic domain, comprising both Archean and Proterozoic units, followed by effective mixing during the transport. The Archean zircon grains (25%) are mostly Neoarchean. The Paleoproterozoic grains lack zircons at 2.5–2.2 Ga and plot dominantly (92%) between 1.92 and 2.05 Ga. The indicated maximum deposition ages vary from 1.95–1.94 Ga to 1.92 Ga. The main source area proposed is the Himalaya-type Lapland-Kola orogen (now) in the northeast, which experienced mountain building and erosion at 1.95–1.91 Ga.The western margin of the Karelian Province shows evidence of rifting and lithosphere thinning from 2.1 to 1.95 Ga but it is still under debate whether the craton breakup occurred at 2.06 Ga in a volcanic or later at 1.95 Ga in a non-volcanic margin setting. One hypothesis is that the onset of collision in the northeast changed plate motion and lead to a new spreading within the pre-existing passive margin at 1.97–1.95 Ga. Thus, both a volcanic margin at 2.06 Ga and a non-volcanic margin at ca. 1.95 Ga could have been operated at the western margin of the Karelian Province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号