首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
徐峥  郑永飞 《地球科学》2019,44(12):4135-4143
大陆玄武岩通常具有与洋岛玄武岩相似的地球化学成分,其中含有显著的壳源组分.对于洋岛玄武岩来说,虽然其中的壳源组分归咎于深俯冲大洋板片的再循环,但是对板片俯冲过程中的壳幔相互作用缺乏研究.对于大陆玄武岩来说,由于其形成与特定大洋板片在大陆边缘之下的俯冲有关,可以用来确定古大洋板片俯冲的地壳物质再循环.本文总结了我们对中国东部新生代玄武岩所进行的一系列地球化学研究,结果记录了古太平洋板片俯冲析出流体对地幔楔的化学交代作用.这些大陆玄武岩普遍具有与洋岛玄武岩类似的地球化学成分,在微量元素组成上表现为富集LILE和LREE、亏损HREE,但是不亏损HFSE的分布特点,在放射成因同位素组成上表现为亏损至弱富集的Sr-Nd同位素组成.在排除地壳混染效应之后,这些玄武岩的地球化学特征可以由其地幔源区中壳源组分的性质来解释.俯冲大洋地壳部分熔融产生的熔体提供了地幔源区中的壳源组分,其中包括洋壳镁铁质火成岩、海底沉积物和大陆下地壳三种组分.华北和华南新生代大陆玄武岩在Pb同位素组成上存在显著差异,反映它们地幔源区中的壳源组分有所区别.中国东部新生代玄武岩的地幔源区是古太平洋板片于中生代俯冲至亚欧大陆东部之下时,在>200 km的俯冲带深度发生壳幔相互作用的产物.在新生代期间,随着俯冲太平洋板片的回卷引起的中国东部大陆岩石圈拉张和软流圈地幔上涌,那些交代成因的地幔源区发生部分熔融,形成了现今所见的新生代玄武岩.   相似文献   

2.
Paul Mann  Asahiko Taira   《Tectonophysics》2004,389(3-4):137
Oceanic plateaus, areas of anomalously thick oceanic crust, cover about 3% of the Earth's seafloor and are thought to mark the surface location of mantle plume “heads”. Hotspot tracks represent continuing magmatism associated with the remaining plume conduit or “tail”. It is presently controversial whether voluminous and mafic oceanic plateau lithosphere is eventually accreted at subduction zones, and, therefore: (1) influences the eventual composition of continental crust and; (2) is responsible for significantly higher rates of continental growth than growth only by accretion of island arcs. The Ontong Java Plateau (OJP) of the southwestern Pacific Ocean is the largest and thickest oceanic plateau on Earth and the largest plateau currently converging on an island arc (Solomon Islands). For this reason, this convergent zone is a key area for understanding the fate of large and thick plateaus on reaching subduction zones.This volume consists of a series of four papers that summarize the results of joint US–Japan marine geophysical studies in 1995 and 1998 of the Solomon Islands–Ontong Java Plateau convergent zone. Marine geophysical data include single and multi-channel seismic reflection, ocean-bottom seismometer (OBS) refraction, gravity, magnetic, sidescan sonar, and earthquake studies. Objectives of this introductory paper include: (1) review of the significance of oceanic plateaus as potential contributors to continental crust; (2) review of the current theories on the fate of oceanic plateaus at subduction zones; (3) establish the present-day and Neogene tectonic setting of the Solomon Islands–Ontong Java Plateau convergent zone; (4) discuss the controversial sequence and timing of tectonic events surrounding Ontong Java Plateau–Solomon arc convergence; (5) present a series of tectonic reconstructions for the period 20 Ma (early Miocene) to the present-day in support of our proposed timing of major tectonic events affecting the Ontong Java Plateau–Solomon Islands convergent zone; and (6) compare the structural and deformational pattern observed in the Solomon Islands to ancient oceanic plateaus preserved in Precambrian and Phanerozoic orogenic belts. Our main conclusion of this study is that 80% of the crustal thickness of the Ontong Java Plateau is subducted beneath the Solomon island arc; only the uppermost basaltic and sedimentary part of the crust (7 km) is preserved on the overriding plate by subduction–accretion processes. This observation is consistent with the observed imbricate structural style of plateaus and seamount chains preserved in both Precambrian and Phanerozoic orogenic belts.  相似文献   

3.
The accretion of oceanic plateaus has played a significant role in continental growth during Earth's history, which is evidenced by the presence of oceanic island basalts (OIB) and plume-type ophiolites in many modern orogens. However, oceanic plateaus can also be subducted into the deeper mantle, as revealed by seismic tomography. The controlling factors of accretion versus subduction of oceanic plateaus remain unclear. Here, we investigate the dynamics of oceanic plateau accretion at active continental margins using a thermo-mechanical numerical model. Three major factors for the accretion of oceanic plateaus are studied: (1) a thinned continental margin of the overriding plate, (2) “weak” layers in the oceanic lithosphere, and (3) a young oceanic plateau. For a large oceanic plateau, the modes of oceanic plateau accretion can be classified into one-sided and two-sided subduction–collisional regimes, which mainly depend on the geometry of the continental margin (normal or thinned). For smaller-sized seamounts, accretion occurs only if all three factors are satisfied, of which a thinned continental margin is the most critical. Possible geological analogues for the two-sided subduction–collisional mode include the Taiwan orogenic belt and subduction of the Ontong Java Plateau. The accretion model for small oceanic plateaus applies to the Nadanhada Terrane in Northeast China.  相似文献   

4.
自20世纪80年代在大陆地壳岩石中发现柯石英和金刚石等超高压变质矿物以来,大陆深俯冲和超高压变质作用就成为了固体地球科学研究的前沿和热点领域之一。经过三十余年的研究,已经在大陆地壳的俯冲深度、深俯冲岩石变质P-T-t轨迹、俯冲地壳岩石的折返机制、深俯冲岩石的原岩性质、大陆碰撞过程中的熔/流体活动与元素活动性、俯冲隧道内部不同类型壳幔相互作用、碰撞后岩浆岩的成因、大陆碰撞造山带成矿作用等方面取得了许多重要成果。本文重点对大陆俯冲带超高压岩石部分熔融和不同类型壳幔相互作用近十年来的研究进展进行回顾和总结,并对存在的相关科学问题和未来的研究方向进行了展望。深俯冲大陆地壳的部分熔融主要出现在两个阶段:折返的初期阶段和碰撞后阶段,前者产生了碱性熔体,后者产生了钙碱性熔体。大陆俯冲带壳幔相互作用有两种类型,涉及地幔楔与两种俯冲带流体的交代反应:一是来自深俯冲陆壳的变质脱水/熔融,二是来自先前俯冲古洋壳的变质脱水/熔融。  相似文献   

5.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

6.
Part II of this paper reports geochemical and Nd isotope characteristics of the volcanogenic and siliceous-terrigenous complexes of the Lake zone of the Central Asian Caledonides and associating granitoids of various ages. Geological, geochronological, geochemical, and isotopic data were synthesized with application to the problems of the sources and main mechanisms of continental crust formation and evolution for the Caledonides of the Central Asian orogenic belt. It was found that the juvenile sialic crust of the Lake zone was formed during the Vendian-Cambrian (approximately 570–490 Ma) in an environment of intraoceanic island arcs and oceanic islands from depleted mantle sources with the entrainment of sedimentary crustal materials into subduction zones and owing to the accretion processes of the amalgamation of paleoceanic and island arc complexes and Precambrian microcontinents, which terminated by ∼490 Ma. The source of primary melts for the low-Ti basalts, andesites, and dacites of the Lake zone ophiolites and island arc complexes was mainly the depleted mantle wedge above a subduction zone. In addition, an enriched plume source contributed to the genesis of the high-Ti basalts and gabbroids of oceanic plateaus. The source of terrigenous rocks associating with the volcanics was composed of materials similar in composition to the country rocks at a minor and varying role of ancient crustal materials introduced into the ocean basin owing to the erosion of Precambrian microcontinents. The sedimentary rocks of the accretionary prism were derived by the erosion of mainly juvenile island arc sources with a minor contribution of rocks of the mature continental crust. The island arc and accretion stages of the development of the Lake zone (∼540–590 Ma) were accompanied by the development of high- and low-alumina sodic granitoids through the melting at various depths of depleted mantle reservoirs (metabasites of a subducted oceanic slab and a mantle wedge) and at the base of the island arc at the subordinate role of ancient crustal rocks. The melts of the postaccretion granitoids of the Central Asian Caledonides were derived mainly from the rocks of the juvenile Caledonian crust at an increasing input of an ancient crustal component owing to the tectonic mixing of the rocks of ophiolitic and island arc complexes and microcontinents. The obtained results indicate that the Vendian-Early Paleozoic stage of the evolution of the Central Asian orogenic belt was characterized by the extensive growth of juvenile continental crust and allow us to distinguish a corresponding stage of juvenile crust formation.  相似文献   

7.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

8.
The Kostomuksha greenstone belt consists of two lithotectonic terranes, one mafic igneous and the other sedimentary, separated by a major shear zone. The former contains submarine 2.8 Gyr old komatiite-basalt lavas and volcaniclastic lithologies with trace element and isotopic compositions resembling those of recent oceanic flood basalts [?Nd(T) =+ 2,8, μ.1= 8.73 (Nb/Th)N= 1.5–2.1 (Nb/La)N= 1.0–1.5]. We suggest that the mafic terrane is a remnant of the upper crustal part of an Archaean oceanic plateau derived from partial melting of a mantle plume head. When the plateau reached the continental margin, it collided with the sedimentary terrane but was too buoyant to subduct. As a result, the volcanic section of the plateau was imbricated and obducted thus becoming a new piece of continental crust. The deeper zones were subducted and disappeared from the geological record.  相似文献   

9.
Alan R. Hastie  Andrew C. Kerr 《Earth》2010,98(3-4):283-293
The Caribbean oceanic plateau formed in the Pacific realm when it erupted onto the Farallon plate from the Galapagos hotspot at ~ 90 Ma. The plateau was subsequently transported to the northeast and collided with the Great Arc of the Caribbean thus initiating subduction polarity reversal and the consequent tectonic emplacement of the Caribbean plate between the North and South American continents. The plateau represents a large outpouring of mafic volcanism, which has been interpreted as having formed by melting of a hot mantle plume. Conversely, some have suggested that a slab window could be involved in forming the plateau. However, the source regions of oceanic plateaus are distinct from N-MORB (the likely source composition for slab window mafic rocks). Furthermore, melt modelling using primitive (high MgO) Caribbean oceanic plateau lavas from Curaçao, shows that the primary magmas of the plateau contained ~ 20 wt.% MgO and were derived from 30 to 32% partial melting of a fertile peridotite source region which had a potential temperature (Tp) of 1564–1614 °C. Thus, the Caribbean oceanic plateau lavas are derived from decompression melting of a hot upwelling mantle plume with excess heat relative to ambient upper mantle. Extensional decompression partial melting of sub-slab asthenosphere in a slab window with an ambient mantle Tp cannot produce enough melt to form a plateau. The formation of the Caribbean oceanic plateau by melting of ambient upper mantle in a slab window setting, is therefore, highly improbable.  相似文献   

10.
We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics,trench geometry,and mechanisms for plateau accretion and continental growth.Transient instabilities of the convergent margin are produced,resulting in:contorted trench geometry;trench migration parallel with the plate margin;folding of the subducting slab and orocline development at the convergent margin;and transfer of the plateau to the overriding plate.The presence of plume material beneath the oceanic plateau causes flat subduction above the plume,resulting in a "bowed" shaped subducting slab.In plateau-only models,plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau.The plateau shortens and some plateau material subducts.The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin.In the plateau + plume model,plateau accretion causes rapid trench advance.Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate.The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau,effectively embedding the plateau into the overriding plate.A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window.In all of the models,the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate.The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian Orogen(Altiads),which are characterised by accreted ophiolite complexes with diverse geochemical affinities,and a protracted evolution of accretion of exotic terranes including oceanic plateau and terranes with plume origins.  相似文献   

11.
杨高学  朱钊  刘晓宇  李海  佟丽莉 《地质学报》2023,97(6):2054-2066
蛇绿岩记录了大洋岩石圈形成、演化、消亡的全过程,是刻画区域板块构造和洋 陆格局演化的关键证据。本文通过系统梳理前人相关研究,总结西准噶尔蛇绿岩最新研究成果,探讨大陆地壳增生方式、恢复古大洋演化历史,从而对西准噶尔构造体制转化提供新制约。西准噶尔地区发育多条震旦纪—石炭纪被构造肢解的蛇绿岩带,具有典型的岩块 基质结构,绝大多数蛇绿岩包括正常洋壳组分和海山/大洋高原残片,其中基性岩具有MORB和OIB的地球化学特征。基于前人研究,本文认为在西准噶尔古大洋发育过程中,发育不同时代与地幔柱有关的海山/大洋高原,同时存在增生型和侵蚀型两类汇聚板块边界。另外,大洋高原增生不仅是大陆地壳增生的有效途径之一,还可能诱发俯冲极性反转和传递。而在大洋高原形成初期,还可能存在地幔柱诱发俯冲起始机制。  相似文献   

12.
宋衍茹  叶凯  续海金 《岩石学报》2009,25(1):147-158
苏鲁超高压变质地体中发现了大量包裹在超高压(UHP)变质片麻岩和混合岩中的造山带石榴橄榄岩。根据它们的野外产出特征和全岩地球化学成分,其中一部分石榴橄榄岩的原岩来自于亏损地幔,后来被卷入俯冲陆壳并经受过俯冲陆壳产生的熔/流体的交代。但是,对这些岩石早期的亏损过程尚缺乏清晰的认识。本文报道了东海芝麻坊石榴子石二辉橄榄岩早期变质演化的新证据。根据详细的变质反应结构观察和矿物成分研究,芝麻坊石榴子石二辉橄榄岩在经历高压低温俯冲带型超高压变质之前经历了至少两期变质演化。其原岩矿物组合由石榴子石变斑晶的高Ca-Cr核部及其中包裹的高Mg单斜辉石、高Al-Cr斜方辉石和高Mg-Ni橄榄石所记录;指示芝麻坊石榴子石二辉橄榄岩的原岩为高温-高压的富集石榴子石二辉橄榄岩。第二期矿物组合为包裹在低Cr变斑晶石榴子石幔部和细粒新生石榴子石核部的大量富Al铬铁矿和高Mg低Ni橄榄石以及少量高Mg斜方辉石。该期组合未发现单斜辉石,表明岩石随后被转变为高温低压的难熔尖晶石方辉橄榄岩或尖晶石纯橄岩。芝麻坊石榴子石二辉橄榄岩的早期变质演化记录了它们被卷入大陆板片俯冲带之前的地幔楔上升对流过程。笔者认为芝麻坊石榴子石二辉橄榄岩的原岩来源于早期俯冲大洋板片之上的深部高温富集地幔楔,洋壳俯冲过程中的地幔楔对流导致其上升到弧后或岛弧之下的地幔楔浅部,减压部分熔融使原本富集的石榴子石二辉橄榄岩转化为难熔的尖晶石方辉橄榄岩或尖晶石纯橄岩。  相似文献   

13.
岛弧火山岩主要为俯冲带的俯冲板片脱水形成的富大离子亲石元素流体交代地幔楔,并使其发生部分熔融,产生岛弧岩浆作用而形成的,岩石组合通常为玄武岩—安山岩—英安岩—流纹岩及相应侵入岩组合。它以Al2O3、K2O高,低Ti O2,且K2ONa2O为特征,相对富集LILE,亏损HFSE,特别是Ti、Nb、Ta等。本文主要从岛弧岩浆作用的起因着手,分析流体和熔体对地幔楔的交代作用,以及岛弧岩浆作用过程,进而分析岛弧火山岩的地球化学特征。  相似文献   

14.
The Coastal Accretionary Complex of central Chile constitutes the product of early Carboniferous to Late Triassic subduction at the rear of Chilenia, a continental terrane likely derived from Laurentia and accreted to southwestern margin of Gondwana during the Mid to Late Devonian. The complex contains basaltic metavolcanic sequences of the subducted oceanic lithosphere accreted to the active margin. In this paper, we address the tectonic setting of these rocks by means of a geochemical study in the coastal area of Pichilemu region, central Chile. The accreted fragments of oceanic crust occupy different structural levels, exhibit variable metamorphic grade, and have geochemical fingerprints that reveal a compositional heterogeneity of the subducted oceanic crust. The amphibolites have N to E-MORB compositions. Greenschist units include N-MORB and E-MORB transitional to OIB, and blueschists and greenschists interleaved within a single metavolcanosedimentary sequence have OIB signatures. Neodymium isotopic systematics indicate depleted and enriched mantle sources, whereas strontium isotopic systematics indicate seawater/rock interaction. The variety of rocks suggests formation in an oceanic setting characterized by shallow and deep mantle sources, such as plume-influenced ridge. Based on the geological, petrological, geochemical, and isotopic characteristics, we propose that the metavolcanic protoliths of the Pichilemu region formed relatively close to the western margin of the Chilenia terrane during the initial stage (late Cambrian–Early Devonian) of seafloor development and drifting of this continental block. Geochemical similarities with oceanic units accreted to the active margin south of the Pichilemu region indicate a regional pattern of the oceanic crust subducted under the Palaeozoic Chilean margin between, at least, 34°S and 39°S latitude, strongly supporting the activity of a mantle plume. This, in turn, can be correlated with the location of the Pacific plume generation zone in early Palaeozoic era, corroborating a Laurentian origin for the Chilenia terrane.  相似文献   

15.
板块俯冲起始与大陆地壳演化   总被引:1,自引:0,他引:1  
组成大陆地壳的物质主要来自两个地质过程:地幔柱活动和板块俯冲。目前大多数研究认为板块俯冲起始于30多亿年前。在板块俯冲起始之前,基性的初始地壳物质受热重熔是大陆地壳生长的主要方式,其中,地幔柱活动是关键。地幔柱不仅向地壳输送玄武质岩浆,同时导致已有玄武质岩石和沉积岩通过部分熔融向中酸性岩石转化。当原始岩石圈强度足够大时,地幔柱会导致岩石圈倾斜、破裂,产生下滑力,诱发板块俯冲。板块俯冲引发岩浆活动,产生大量的岩浆岩,如岛弧安山岩、弧后盆玄武岩等。这些岩浆岩通过喷发、侵位,再经由块体拼贴、增生等过程加入到大陆地壳,是大陆地壳生长的主要途径。同时,板内岩浆活动乃至地幔柱活动等也与板块俯冲有直接或者间接的联系。俯冲再循环物质促进地幔柱发育,也为大陆地壳的生长提供物源和热能。与此同时,大陆地壳不断风化剥蚀,其中一部分沉积物随俯冲板块再循环到地幔,而板块俯冲过程也通过俯冲剥蚀等过程,将仰冲盘岩石圈物质刮削带入地幔。这些是大陆地壳消减的主要途径。目前大陆地壳增生和消减基本处于动态平衡。  相似文献   

16.
Arc–continent collision is a key process of continental growth through accretion of newly grown magmatic arc crust to older continental margin. We present 2D petrological–thermo-mechanical models of arc–continent collision and investigate geodynamic regimes of this process. The model includes spontaneous slab bending, dehydration of subducted crust, aqueous fluid transport, partial melting of the crustal and mantle rocks and magmatic crustal growth stemming from melt extraction processes. Results point to two end-member types of subsequent arc–continent collisional orogens: (I) orogens with remnants of accretion prism, detached fragments of the overriding plate and magmatic rocks formed from molten subducted sediments; and (II) orogens mainly consisting of the closed back-arc basin suture, detached fragments of the overriding plate with leftovers of the accretion prism and quasi insignificant amount of sediment-derived magmatic rocks. Transitional orogens between these two endmembers include both the suture of the collapsed back-arc basin and variable amounts of magmatic production. The orogenic variability mainly reflects the age of the subducting oceanic plate. Older, therefore colder and denser oceanic plates trigger subduction retreat, which in turn triggers necking of the overriding plate and opening of a backarc basin in which new oceanic lithosphere is formed from voluminous decompression melting of the rising hot asthenosphere. In this case, subducted sediments are not heated enough to melt and generate magmatic plumes. On the other hand, young and less dense slabs do not retreat, which hampers opening of a backarc basin in the overriding plate while subducted sediments may reach their melting temperature and develop trans-lithospheric plumes. We have also investigated the influences of convergence rate and volcanic/plutonic rocks' ratio in newly forming lithosphere. The predicted gross-scale orogenic structures find similarities with some natural orogens, in particular with deeply eroded orogens such as the Variscides in the Bohemian Massif.  相似文献   

17.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

18.
埃达克岩:关于其成因的一些不同观点   总被引:171,自引:57,他引:114  
埃达克岩的概念是十多年前提出来的,指由俯冲的年轻洋壳熔融形成的火成岩。自从最初在现代岛弧近十几个地方报道埃达克岩以来,新近又在几个地方发现有埃达克岩(如日本西南部,外墨西哥火山岩带,等等)。但是,过去十 多年的研究也表明,埃达克岩可以由俯冲期间的其它过程产生(例如,沿俯冲板片的撕裂边,留在上地幔中的板片残余等)。另外,埃达克岩似乎与一些岩石呈共生组合,这些岩石包括高镁安山岩、富Nb的弦玄武岩(NEAB),还可能有玻安岩(几个研究者已在玻安岩中发现有埃达克岩的组分)。高镇安山岩不是来自埃达克与地幔的相互作用(Adak-type),就是来自此相互作用期间地幔的熔融(Piip-type);富Nb的弦玄武岩,据认为是来自一种被埃达我岩广泛交代的地幔的部分熔融。作为一个新的岩套,埃达克岩交代火山岩系列已被建议用来解释各种岩石组合。此外,大量的富Pb弧玄武岩也已被发现包含有超镁铁质的地幔包体,而这些包体有高亏损地幔与埃达克反应的明显证据。关于主要与下地壳熔而不是冲板片有关的埃达克岩的起源已提出几种假说,一个模型认为,下地壳熔融出现在玄武质岩浆底侵下地壳时。但是,有许多理由似乎可以排除这种模式。另一种模型认为,在大陆地壳很厚的区域,下地壳可能变成榴辉岩,从而拆离并下沉到地幔中(拆沉)。这个拆沉过程将导致下地壳下中拆沉的下地壳的上部与相对热的地幔接触,进而可引起下地壳熔融和埃达克岩的形成。这使我们认为,在中国东部发现的与俯冲作用无关的白垩纪埃达克可能是下地壳熔融与拆沉作用的产物。我们 还要强调,如果下地壳熔融与拆沉作用真能形成埃达克岩,那么埃达克岩这一术语不应该仅仅局限于与板片熔融有关的过程,而应包括那些与下地壳熔融有关的过程。太古宙的大陆地壳主要由奥长花岗岩、英云闪长岩和英安岩(TTD)组成。这种大陆地壳是来自板片熔融还是下地壳熔融仍是有争议的。然而,我们认为,太古宙期间地幔的较高温度会导致较多的洋中脊的形成,从而产生比今天“更多”的年轻洋壳的俯冲。据此,我们认为,太古宙TTD大陆地宙主要由板片熔融形成。我们也注意到,太古宙是广泛金矿化的时期。有些研究者还发现,金和铜的矿化与埃达克质交代火山岩系列有关。因此,该火山岩系列可能会寻找金属矿床的一个重要标志。  相似文献   

19.
大陆的起源     
太阳系固体星球都有类似的核-幔-壳结构,但唯独人类居住的地球具有长英质组成的大陆壳。太古宙大陆克拉通主要由英云闪长岩(Tonalite)-奥长花岗岩(Trondhjemite)-花岗闪长岩(Granodiorite)为主的TTG深成侵入体变质而成的正片麻岩和由基性-超基性酸性火山岩及少量沉积岩变质的表壳岩(绿岩)组成。已有的资料显示这些太古宙大陆岩石组合起源于大洋壳的部分熔融。大洋壳分为大洋盆地、洋中脊、岛弧和洋底高原(大洋岛)。前两者地壳的平均厚度只有5~10km,不可能成为形成太古宙TTG深成侵入体的场所。因此,长英质大陆或起源于板块构造体制下的岛弧,或起源于地幔柱体制下的洋底高原。板块构造体制下的岛弧模式能够很好地解释太古宙克拉通TTG深成岩的成因,即俯冲大洋板片部分熔融所形成的埃达克岩相当于太古宙高压(高Al2O2)型TTG,而俯冲板片脱水导致地幔楔部分熔融形成的玄武质地壳再次熔融所形成的钙碱性花岗质岩石相当于太古宙低压(低Al2O2)型TTG。然而,板块构造体制下的岛弧模式不能令人满意地解释太古宙绿岩带火山岩组合中缺少大量的安山岩、科马提岩~1600℃高温形成环境、克拉通规模近于同时侵位的TTG岩套、大规模卵形构造样式、代表性的逆时针P-T轨迹变质作用演化等诸多特征。相反,地幔柱洋底高原模式能够合理地解释太古宙绿岩双峰式火山岩组合的成因,即基性的拉斑玄武岩和超基性的科马提岩分别来自地幔柱头部部分熔融和尾柱熔浆,而酸性的英安岩、流纹质英安岩和流纹岩是地幔柱热异常导致的洋底高原底部的部分熔融物。按照地幔柱洋底高原模式,太古宙TTG岩浆是由洋底高原底部玄武质地壳的部分熔融而成,这样能够合理地解释为什么太古宙TTG能够在短时间内巨量产出并在形成时间上没有任何系统变化。地幔柱洋底高原模式还能合理地解释太古宙克拉通穹隆构造(dome-and-keel structure)样式、近等压冷却型(IBC)逆时针P-T轨迹,缺少蓝片岩和双变质带的等典型岛弧俯冲带的标志的特征。本文在对大陆起源的岛弧模式和地幔柱洋底高原模式综合评述的基础上,提出一个大陆起源于洋底高原的两阶段模式。  相似文献   

20.
中国东部富钾埃达克岩成因的实验约束   总被引:27,自引:21,他引:27  
RobertP.PAPP  肖龙 《岩石学报》2002,18(3):293-302
Adakite在地球化学上具明显特征的火山岩和深成花岗岩类岩石,见于洋内岛孤环境和大陆孤,如安底斯孤。在洋内岛孤,由热的消减的大洋岩石圈熔融形成(叫做“板片熔融”),而在大陆孤,熔融曾发生在构造或岩浆加厚的下地壳底(叫做“下地壳熔融”)。在这两种产状环境中,adakite的鲜明地球化学特征被认为是起因子,一种不同程度含水的变质基性原岩在足够深度上的部分熔融,这里的足够深度是指可使石榴子石在残余结晶组合(即石榴角闪石和/或榴辉石的残余)中保持稳定的深度。“原始”或“母”adakite熔体一旦形成,便可能在其向上运移和侵位上地壳期间受到同化作用(或是地幔,或是大陆物质)和结晶分异作用的改造。中国东部晚中生代(早中白垩世,160-110Ma)的adakite,与见于同一地区和其它地方的钠质adakite相比,通常富含钾(K2O)和其它大离子亲石元素(如Ba,Th,U),有较低的Na2O/K2O比值(-1.0-1.1),类似于玄武岩在石榴角闪岩-榴辉岩相含水熔融实验中所产生adakite熔体,要么是由洋壳板片熔融所形成,要么是由不同成分的玄武质下地壳原岩部分熔融所形成。尽管有些成分差异,它们的总体化学特征仍然可将中国东部的富钾花岗岩类岩石定均adakite。我们把这些富钾的adakite的独特化学行特征,归因于成分来源的特殊性,或adakite母岩浆遭受了同化混染和结晶分异(AFC)作用的改造。虽然中国东部与消减带环境明显不同这一点表明,那里的adakite可由板块底部侵位的(岩浆加厚的)镁铁质下地壳部分熔融所形成,但燕山运动期间中国东部存在“平坦”俯冲的地球动力学环境是可能被排除的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号