首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First phase folds F1 developed in polydeformed Ajabgarh Group rocks of Proterozoic age are studied using various geometrical methods of analysis for compatibility of homogeneous strain in both class 1–3 pairs by correlatingt′ ga/α plots with existing curves for competent layers and matchingt ga/α plots with the flattening curves for the incompetent layers. F1 folds were initiated by the process of buckling but underwent [(λ21) = 0.2 to 0.7] for competent layers andR- values of 1.1 to 5 for incompetent layers. The varying flattening is also revealed by the geometry of folds. The apparent buckle shortening of folds which ranges between 49 and 67 per cent with a majority of the folds having shortening values between 50% and 55% (exclusive of layer parallel strain) and inverse thickness method strain up to 50%. Besides flattening, the fold geometry was also modified by the pressure solution. This is borne by the presence of dark seams rich in phyllosilicates and disseminated carbonaceous material offsetting limbs of buckled quartz veins in slates  相似文献   

2.
Finite-element folds of similar geometry   总被引:3,自引:0,他引:3  
Model folds of similar geometry have been produced by using the finite-element method and the constitutive relations of a layer of wet quartzite embedded in a marble matrix with an initially sinusoidal configuration and a 10° limb dip. The power law for steady-state flow of Yule Marble (Heard and Raleigh, 1972) is used for the matrix and our new law for Canyon Creek quartzite deformed in the presence of water is used for the layer. The equiv- alent viscosity of the wet quartzite is highly temperature-sensitive, giving rise to a strong temperature dependence of the quartzite: marble viscosity ratio which, at a strain rate of 10−14/sec, drops from 543 at 200° to 0.13 at 800°C. At 375°C (ηq/ηm = 10), concentric folds develop at all strains to 80% natural shortening and stress, finite strain and viscosity distributions are somewhat similar to those found previously. Raising the temperature to 550° C (ηq/ηm = 1), at any stage of prior amplification, causes the folds to flatten with increasing strain, accompanied by attenuation of limbs and thickening of hinges, leading to folds with similar geometries and isoclinal folds at extreme strains. The effects are more pronounced at higher temperatures and at 700° C (ηq/ηm = 0.3) limb attenuation is so severe as to give rise to unrealistic geometries. At temperatures below about 600° C (ηq/ηm = 2), similar folds do not form. It thus appears as if a viscosity contrast near unity is required to produce similar folds in rocks, under the conditions simulated and different temperature dependencies of viscosities of materials in layered sequences is one important means of reducing viscosity contrasts.  相似文献   

3.
Pinch and swell structures occur where a more competent layer in a weaker matrix is subjected to layer-parallel extension. In this contribution, we use numerical models to explore the use of pinch and swell structure shape symmetry and asymmetry as a determinant of relative viscosity between layers. Maximum asymmetry is attained when the matrix viscosity on one side is subtly weaker than the competent layer, while the other side is significantly weaker.Our numerical results are directly applied to asymmetrically developed pinch and swell structures in exposed lower continental crust. Here, shape geometries observed in a shear zone comprised of plagioclase-dominated, garnet-dominated and mixed amphibole-plagioclase-dominated bands, reveals that the plagioclase-dominated band is the most competent band and is marginally stronger (2×) and significantly stronger (10–40×) than the fine grained garnet-dominated and mixed amphibole-plagioclase-dominated band, respectively. Based on the experimentally determined viscosity of a plagioclase-dominated material and quantitative microstructural analysis, the viscosity range of the natural rock bands is 2.8 × 1015 to 1.1 × 1017 Pa s. Consequently, the assumption that the experimentally-derived plagioclase flow law is an appropriate proxy for the middle to lower continental crust may lead to a viscosity over-estimation by up to forty times.  相似文献   

4.
Plasticine and plasticine-like materials have been widely used as analogue materials for experimental deformation, but not many workers have conducted detailed investigations on their rheology. The physical properties of Beck's green and black plasticine, a modelling material made in Gomaringen, Germany, and plasticine/oil mixtures were investigated by means of uniaxial compression and relaxation tests. Beck's plasticine is a non-Newtonian fluid characterised by strain rate-dependent plastic yielding and strain hardening. Strain hardening is more pronounced at low strain rates leading to an increase of both stress exponent and viscosity. The addition of oil leads to an increase of the stress exponent and a decrease in viscosity. The strain dependence of viscosity decreases with increasing oil content. Compression tests on preflattened plasticine were also conducted in order to study possible ‘strain memory’ of the materials. Preflattened plasticine is characterised by a later onset of yielding and an increase in both stress exponent and viscosity. Our results suggest that Beck's green and black plasticine is a suitable analogue material for modelling rocks that deform by dislocation creep and exhibit pronounced strain hardening. Nevertheless, plane strain modelling of boudinage has verified analytical solutions for the dominant wavelength at viscosity contrasts of approximately 1.5 and 2.5.  相似文献   

5.
The conditions under which gold and arsenic are enriched separately during mineralization in gold deposits in southwestern Guizhou Province were described and the thermodynamic calculations gave: 200–150°C at 400 × 10−6 -300 × 106 Pa (corresponding to a depth between 1.6 km and 1.2 km); lgf o2,−40 to -35 Pa; lgf s2, -20 to−16 Pa; pH 5.0 -4.2 and Eh -0.53 V. This project was jointly supported by the National Natural Science Foundation of China and the Open Lab. of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

6.
The thermal expansion of gehlenite, Ca2Al[AlSiO7], (up to T=830 K), TbCaAl[Al2O7] (up to T=1100 K) and SmCaAl[Al2O7] (up to T=1024 K) has been determined. All compounds are of the melilite structure type with space group Thermal expansion data were obtained from in situ X-ray powder diffraction experiments in-house and at HASYLAB at the Deutsches Elektronen Synchrotron (DESY) in Hamburg (Germany). The thermal expansion coefficients for gehlenite were found to be: α1=7.2(4)×10−6×K−1+3.6(7)×10−9ΔT×K−2 and α3=15.0(1)×10−6×K−1. For TbCaAl[Al2O7] the respective values are: α1=7.0(2)×10−6×K−1+2.0(2)×10−9ΔT×K−2 and α3=8.5(2)×10−6×K−1+2.0(3)×10−9ΔT×K−2, and the thermal expansion coefficients for SmCaAl[Al2O7] are: α1=6.9(2)×10−6×K−1+1.7(2)×10−9ΔT×K−2 and α3=9.344(5)×10−6×K−1. The expansion mechanisms of the three compounds are explained in terms of structural trends obtained from Rietveld refinements of the crystal structures of the compounds against the powder diffraction patterns. No structural phase transitions have been observed. While gehlenite behaves like a ‘proper’ layer structure, the aluminates show increased framework structure behavior. This is most probably explained by stronger coulombic interactions between the tetrahedral conformation and the layer-bridging cations due to the coupled substitution (Ca2++Si4+)–(Ln 3++Al3+) in the melilite-type structure. This article has been mistakenly published twice. The first and original version of it is available at .  相似文献   

7.
Molecular dynamics simulations employing a many-body embedding potential model have been conducted to calculate both bulk and shear viscosity of pure liquid iron at the Earth's outer core conditions. Liquid iron shear viscosity thus obtained is in the order of 10−2 Pa · s and is in close agreement with previous estimates. In contrast, liquid iron bulk viscosity is in the order of 10−3 to 10−4 Pa · s and is much smaller than previous estimates. Consequently, the ratio of bulk to shear viscosity is close to 0.1. This value disagrees with both the common speculation that bulk and shear viscosities are equal at ambient pressure, and the previous inference that bulk viscosity of liquid iron is much larger than shear viscosity at outer core conditions. Potential implications of present data are also briefly given for the dynamic state of the outer core. Received: 9 April 1999 / Revised, accepted: 7 June 1999  相似文献   

8.
This study is aimed at determining the diffusion coefficient of net-work modifiers (mainly Na, K, and Ca) in a two-phase melt-NaCl system, in which the melts are granitic and the system is NaCl-rich in composition. The diffusion coefficients of Na, K, and Ca were measured at the temperatures of 750 – 1400°C, pressures of 0.001 × 108 – 2 × 108 Pa, and initial H2O contents of 0 wt% –6.9 wt% in the granitic melts. The diffusion coefficients of Fe and Mg were difficult to resolve. In all experiments a NaCl melt was present as well. In the absence of H2O, the diffusion of net-work modifiers follows an Arrhanious equation at 1 × 105 Pa: lgDca=−3. 88−5140/T, lgDk =−3. 79−4040/T, and lgDNa, =−4.99−3350/T, where D is in cm2 /s andT is in K. The diffusion coefficients of Ca, Na, K, and Fe increase non-linearly with increasing H2O content in the melt. The presence of about 2 wt% H2O m the melt will lead to a dramatical increase in diffusivity, but higher H2O content has only a minor effect. This change is probably the result of a change in the melt structure when H2O is present. The diffusion coefficients measured in this study are significantly different from those in previous works. This may be understood in terms of the “transient two-liquid equilibrium” theory. Element interdiffusion depends not only on its concentration, but also on its activity co-efficient gradient, which is reflected by the distribution coefficient, of the two contacting melts.  相似文献   

9.
Plasticine rheology has been investigated in plane strain compression and stress relaxation tests. Constant strain rate tests indicate Reiner-Rivlin fluid characteristics or alternatively the deformation properties of plasticine may be described by a constitutive flow law of the type e = K σN where N= 6–9. This relationship was found for the three types of plasticine studied. Relaxation data indicate complex behaviour with probable structure changes during deformation. Under plane strain conditions at 25°C inhomogeneous flow characterized by ductile shears often occurs at high strains in all three types of plasticine. These effects were not apparent during 45°C tests. The application of plasticine analogues to simulate rock structures is discussed.  相似文献   

10.
 The viscosity of albite (NaAlSi3O8) melt was measured at high pressure by the in situ falling-sphere method using a high-resolution X-ray CCD camera and a large-volume multianvil apparatus installed at SPring-8. This system enabled us to conduct in situ viscosity measurements more accurately than that using the conventional technique at pressures of up to several gigapascals and viscosity in the order of 100 Pa s. The viscosity of albite melt is 5.8 Pa s at 2.6 GPa and 2.2 Pa s at 5.3 GPa and 1973 K. Experiments at 1873 and 1973 K show that the decrease in viscosity continues to 5.3 GPa. The activation energy for viscosity is estimated to be 316(8) kJ mol−1 at 3.3 GPa. Molecular dynamics simulations suggest that a gradual decrease in viscosity of albite melt at high pressure may be explained by structural changes such as an increase in the coordination number of aluminum in the melt. Received: 6 January 2001 / Accepted: 27 August 2001  相似文献   

11.
Surface tension (σ) profoundly influences the ability of gas bubbles to nucleate in silicate melts. To determine how temperature impacts σ, experiments were carried out in which high-silica rhyolite melts with 5 wt% dissolved water were decompressed at temperatures that ranged from 775 to 1,085°C. Decompressions were also carried out using dacite melts with 4.3 wt% dissolved water at 1,150°C. Water bubbles nucleated in rhyolite only when decompressions exceeded 95 MPa at all temperatures. Bubbles nucleated in number densities that increased as decompression increased and at hotter temperatures at a given amount of decompression. After correcting decompression amounts for temperature differences, values for σ were estimated from nucleation rates and found to vary between 0.081 and 0.093 N m−1. Surface tension decreases as temperature increases from 775 to 875°C, but then increases as temperature increases to 1,085°C. Those values overlap previous results, but only when melt viscosity is less than 104 Pa s. For low-viscosity rhyolite, there is a strong correlation of σ with temperature, in which σ increases by 6.9 × 10−5 N m−1 C−1. That variation is robust for 5–9 wt% dissolved water, as long as melt viscosity is ≤104 Pa s. More viscous rhyolite deviates from that correlation probably because nucleation is retarded in stiffer melts. Bubbles nucleated in dacite when decompressions exceeded 87 MPa, and occured in one or more events as decompression increased. Surface tension is estimated to be 0.083 (±0.001) N m−1 and when adjusted for temperature agrees well with previous results for colder and wetter dacite melts. At a given water content, dacite melts have lower surface tensions than rhyolite melts, when corrected to a fixed temperature.  相似文献   

12.
The Aegean–Anatolian region is characterised by an inhomogeneous deformation pattern with high strain rates and a high seismicity both at the boundaries and in the plate interior. This pattern is controlled by the geometry and rheology of the structural units involved and their tectonic setting. A numerical analysis with a finite-element model of the region is used to quantify the influence of different rheological parameters. Viscoelastic material behaviour is implemented for the mantle lithosphere, whereas the crust is modelled with an elastic–plastic rheology. The variation of the inelastic material properties (viscosity and plastic strength) quantifies the influence of these material parameters on the deformation, stress, and strain patterns. Comparison of the modelled results with geodetic and geophysical observations reveals that the viscosity of the mantle lithosphere is the key to explaining the inhomogeneous deformation pattern. The best-fit model yields a viscosity of 1020 Pa s beneath Anatolia, whereas adjacent regions have viscosities between 1021 and 1023 Pa s. The model also explains the intra-plate seismicity and the stress field as well as its partitioning into regions with strike-slip and normal faulting. The final model is in good agreement with seismological, geodetic, and geological observations. Local deviations can be tracked down to small-scale structures, which are not included in the model.  相似文献   

13.
 Powder diffraction measurements at simultaneous high pressure and temperature on samples of 2M1 polytype of muscovite (Ms) and paragonite (Pg) were performed at the beamline ID30 of ESRF (Grenoble), using the Paris-Edinburgh cell. The bulk moduli of Ms, calculated from the least-squares fitting of VP data on each isotherm using a second-order Birch–Murnaghan EoS, were: 57.0(6), 55.1(7), 51.1(7) and 48.9(5) GPa on the isotherms at 298, 573, 723 and 873 K, respectively. The value of (∂K T /∂T) was −0.0146(2) GPa K−1. The thermal expansion coefficient α varied from 35.7(3) × 10−6 K−1 at P ambient to 20.1(3) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −3.9(1) × 10−6 GPa−1 K−1]. The corresponding values for Pg on the isotherms at 298, 723 and 823 K were: bulk moduli 59.9(5), 55.7(6) and 53.8(7) GPa, (∂K T /∂T) −0.0109(1) GPa K−1. The thermal expansion coefficient α varied from 44.1(2) × 10−6 K−1 at P ambient to 32.5(2) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −2.9(1) × 10−6 GPa−1 K−1]. Thermoelastic coefficients showed that Pg is stiffer than Ms; Ms softens more rapidly than Pg upon heating; thermal expansion is greater and its variation with pressure is smaller in Pg than in Ms. Received: 28 January 2002 / Accepted: 5 April 2002  相似文献   

14.
Structural, morphological, magnetic, and thermal properties have been investigated for a novel post-perovskite oxide CaPtO3 synthesized under high pressure. By comparing obtained structural parameters with those for known post-perovskite compounds, we argue that the chemical bond has a strong covalent character. Precise measurements of the Langevin susceptibility χ 0 = −9.6 × 10−5 emu/mol and Debye temperature θ ∼ 470 K provide a good opportunity to confirm the reliability of first-principle calculations on predicting physical properties of the Earth’s D” layer.  相似文献   

15.
Crystal size distribution (CSD) theory has been applied to drill core samples from Makaopuhi lava lake, Kilauea Volcano, Hawaii. Plagioclase and Fe-Ti oxide size distribution spectra were measured and population densities (n)were calculated and analyzed using a steady state crystal population balance equation: n=n 0 exp(-L/G). Slopes on ln(n) versus crystal size (L) plots determine the parameter G, a. product of average crystal growth rate (G) and average crystal growth time (). The intercept is J/G where J is nucleation rate. Known temperature-depth distributions for the lava lake provide an estimate of effective growth time (), allowing nucleation and growth rates to be determined that are independent of any kinetic model. Plagioclase growth rates decrease with increasing crystallinity (9.9–5.4×10–11 cm/s), as do plagioclase nucleation rates (33.9–1.6×10–3/cm3 s). Ilmenite growth and nucleation rates also decrease with increasing crystallinity (4.9–3.4 ×10–10 cm/s and 15–2.2×10–3/cm3 s, respectively). Magnetite growth and nucleation rates are also estimated from the one sample collected below the magnetite liquidus (G =2.9×10–10 cm/s, J=7.6×10–2/cm3 s). Moments of the population density function were used to examine the change in crystallization rates with time. Preliminary results suggest that total crystal volume increases approximately linearly with time after 50% crystallization; a more complete set of samples is needed for material with <50% crystals to define the entire crystallization history. Comparisons of calculated crystallization rates with experimental data suggests that crystallization in the lava lake occurred at very small values of undercooling. This interpretation is consistent with proposed thermal models of magmatic cooling, where heat loss is balanced by latent heat production to maintain equilibrium cooling.  相似文献   

16.
Strain analysis of the Baraitha conglomerate is attempted by direct measurements on extracted pebbles and by micrometric analysis. The overall deformation is of flattening type, with thek value lower by more than half in the matrix than in the pebbles. The viscosity contrast between pebbles and matrix (μ im) is in the ratio of 2:1 and the bulk deformation appears to be strongly controlled by Ci (concentration of pebbles expressed as percentage). The total shortening (≃35%) in the Baraitha conglomerate is comparable with the shortening accomplished in the folding of the overlying Bijawar Group volcanosedimentary sequence. The bulk strain axesX t, Yt andZ t, as determined from the analysis of the deformed conglomerate, are unsymmetrically oriented with reference to folds formed by oblique flexural-slip with neitherX t norY tcoincident with the fold hinges. The lack of transection of folds by cleavage again suggests flattening deformation. The extension in theY tdirection is greater in the matrix than in the pebbles.  相似文献   

17.
Analysis of existing data and models on point defects in pure (Fe,Mg)-olivine (Phys Chem Miner 10:27–37,1983; Phys Chem Miner 29:680–694, 2002) shows that it is necessary to consider thermodynamic non-ideality of mixing to adequately describe the concentration of point defects over the range of measurement. In spite of different sources of uncertainties, the concentrations of vacancies in octahedral sites in (Fe,Mg)-olivine are on the order of 10−4 per atomic formula unit at 1,000–1,200 °C according to both the studies. We provide the first explicit plots of vacancy concentrations in olivine as a function of temperature and oxygen fugacity according to the two models. It is found that in contrast to absolute concentrations at ∼1,100 °C and dependence on fO2, there is considerable uncertainty in our knowledge of temperature dependence of vacancy concentrations. This needs to be considered in discussing the transport properties such as diffusion coefficients. Moreover, these defect models in pure (Fe,Mg)-olivine need to be extended by considering aliovalent impurities such as Al, Cr to describe the behavior of natural olivine. We have developed such a formulation, and used it to analyze the considerable database of diffusion coefficients in olivine from Dohmen et al. (Phys Chem Miner this volume, 2007) (Part - I) and older data in the literature. The analysis documents unequivocally for the first time a change of diffusion mechanism in a silicate mineral—from the transition metal extrinsic (TaMED) to the purely extrinsic (PED) domain, at fO2 below 10−10  Pa, and consequently, temperatures below 900 °C. The change of diffusion mechanism manifests itself in a change in fO2 dependence of diffusivity and a slight change in activation energy of diffusion—the activation energy increases at lower temperatures. These are consistent with the predictions of Chakraborty (J Geophys Res 102(B6):12317–12331, 1997). Defect formation enthalpies in the TaMED regime (distinct from intrinsic defect formation) lie between −66 and + 15 kJ/mol and migration energies of octahedral cations in olivine are most likely ∼ 260 kJ/mol, consistent with previous inferences (Phys Chem 207:147–162, 1998). Plots are shown for diffusion at various constant fO2 as well as along fO2 buffers, to highlight the difference in behavior between the two. Considering all the diffusion data and constraints from the point defect models, (Fe–Mg) diffusion in olivine along [001] is best described by the Master equations: (1) At oxygen fugacities greater than 10−10 Pa:
where T is in Kelvin, P and fO2 is in Pascals, X Fe is the mole fraction of the fayalite component and R is the gas constant in J/mol/K. (2) At oxygen fugacities less than 10−10  Pa:
These equations reproduce all of the 113 experimental data points within half an order of magnitude. (3) Alternately, a global equation averaging out the change of mechanism may be used, with somewhat larger errors in reproducing the measured diffusion data. It underestimates data at higher temperatures, and overestimates them at lower temperatures on the average. Note that fO2 is not explicitly considered here, leading to additional sources of error:
To obtain diffusion coefficients along [100] and [010], log 6 needs to be subtracted from each of the above equations. An erratum to this article can be found at  相似文献   

18.
A detailed seismicity map of the Central Indian Ridge for the period 1912–1993 is presented, and the earthquakes pertaining to four major transforms offsetting the ridge are utilized to study the moment release pattern. The scalar moment release for the period 1912–1993, and the summed moment rate tensors for both short period (1977–1993) and long period (1912–1993) bring out a unified picture of moment release pattern. The fraction of seismic slip calculated based on depths of 100°C and 400°C limiting temperatures suggests that the Marie-Celeste transform requires a slip almost to a depth of 400°C isotherm to account for the observed moment, and the Argo transform requires depth of faulting much above the 400°C isotherm. A very small fraction of slip is accounted seismically for Vema (53%) and 12° 12′S (23%) even to depths of 100°C isotherm, suggesting a very low order of moment release along these transforms. The horizontal plate velocities and the corresponding strain rates obtained from moment tensor summation of long period data (82 years) give rise to (V y y ; V y x mm. yr−1) of 6.0 and 6.1 along Marie-Celeste, 1.3 and 0.50 along Argo, 0.06 and 0.06 along 12° 12′S, 1.6 and 0.25 along Vema transforms. The corresponding strain rates (ε y yy x × 10−15 S−1) are 12.7 and 6.8 along MarieCeleste, 6.9 and 1.4 along Argo, 0.27 and 0.14 along 12° 12′S, 7.3 and 0.58 along Vema transforms. These results suggest that the strain rates were highest and almost all predicted motion is taken up seismically along the Marie-Celeste transform. The strain rates are lower along Argo transform and the observed moment release require shallower depth of faulting in order to slip to be accounted seismically. The Vema and 12° 12′S transforms are characterized by low strain rates and less than 15 per cent of motion is accommodated seismically within the seismogenic layer. It is proposed that the deficiency of moment release along the Vema and 12° 12′S multiple transform system may be due to most of the plate motion occurring aseismically.  相似文献   

19.
Dynamic recrystallization in the strict sense of the term is the reconstitution of crystalline material without a change in chemical composition, driven by strain energy in the form of dislocations. Driving potentials additional to internal strain energy may contribute to the recrystallization of naturally deformed minerals, which form solid solutions such as feldspar, amphiboles and pyroxenes, if they change their composition during recrystallization. To estimate the relative importance of these driving potentials, the chemical composition of porphyroclasts and recrystallized grains of plagioclase, clinopyroxene and hornblende have been investigated in samples from a high grade shear zone of the Ivrea Zone, Italy. The plagioclases show two different recrystallization microstructures: bulging recrystallization at grain boundaries and discrete zones of recrystallized grains across porphyroclasts probably involving fracturing. Deformation took place under amphibolite facies conditions on a retrograde P,T-path. Porphyroclast and recrystallized compositions from bulging recrystallization microstructures differ only in their Or-content and yield a ΔG between mean host grain and mean recrystallized grain composition at fixed P,T-conditions of approximately 5 Joules/10−4 m3. Extreme compositional variations yield approximately 60 J/10−4 m3. The increase of free energy due to dislocations calculated for common glide systems in plagioclase are on the order of 100 Joules/10−4 m3 for high values of dislocation densities of 1014 m−2. Thus, the effect of chemically induced driving energies on grain boundary velocity appears small for mean compositions but may be as great as that of deformational energies for larger chemical differences. In the other type of microstructure, porphyroclasts and recrystallized grains in discrete zones differ in their anorthite content. The maximum ΔG induced by the compositional disequilibrium is on the order of 100 J/10−4 m3. This maximum value is of the same magnitude as the ΔG derived from high dislocation densities of 1014 m−2. The resulting combined ΔG is approximately twice as high as for deformational ΔG alone, and heterogeneous nucleation may become a feasible recrystallization mechanism which is evident from the microstructures. The recrystallization mechanism depends on the nature of the driving potential. Grain boundary migration (GBM) and heterogeneous nucleation can release Gibbs free energy induced by compositional disequilibrium, whereas this is not likely for subgrain rotation. Therefore, only GBM and heterogeneous nucleation may link metamorphism and deformation, so that syndeformational recrystallization may represent a transitional process ranging from dynamic recrystallization to metamorphic reaction. Received: 8 July 1996 / Accepted: 17 November 1997  相似文献   

20.
The thermal expansion of gehlenite, Ca2Al[AlSiO7], (up to T=830 K), TbCaAl[Al2O7] (up to T=1,100 K) and SmCaAl[Al2O7] (up to T=1,024 K) has been determined. All compounds are of the melilite structure type with space group Thermal expansion data was obtained from in situ X-ray powder diffraction experiments in-house and at HASYLAB at the Deutsches Elektronen Synchrotron (DESY) in Hamburg (Germany). The thermal expansion coefficients for gehlenite were found to be: α1=7.2(4)×10−6 K−1+3.6(7)×10−9ΔT K−2 and α3=15.0(1)×10−6 K−1. For TbCaAl[Al2O7] the respective values are: α1=7.0(2)×10−6 K−1+2.0(2)×10−9ΔT K−2 and α3=8.5(2)×10−6 K−1+2.0(3)×10−9ΔT K−2, and the thermal expansion coefficients for SmCaAl[Al2O7] are: α1=6.9(2)× 10−6 K−1+1.7(2)×10−9ΔT K−2 and α3=9.344(5)×10−6 K−1. The expansion-mechanisms of the three compounds are explained in terms of structural trends obtained from Rietveld refinements of the crystal structures of the compounds against the powder diffraction patterns. No structural phase transitions have been observed. While gehlenite behaves like a ’proper’ layer structure, the aluminates show increased framework structure behaviour. This is most probably explained by stronger coulombic interactions between the tetrahedral conformation and the layer-bridging cations due to the coupled substitution (Ca2++Si4+)-(Ln 3++Al3+) in the melilite-type structure. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号