首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intriguing work on observations of 4.83 GHz formaldehyde (H2CO) absorptions and 4.87 GHz H110α radio recombination lines (RRLs) towards 6.7 GHz methanol (CH3OH) maser sources is presented. Methanol masers provide ideal sites to probe the earliest stages of massive star formation, while 4.8 GHz formaldehyde absorptions are accurate probes of physical conditions in dense (103–105 cm?3) and low temperature molecular clouds towards massive star forming regions. The work is aimed at studying feature similarities between the formaldehyde absorptions and the methanol masers so as to expand knowledge of events and physical conditions in massive star forming regions. A total of 176 methanol maser sources were observed for formaldehyde absorptions, and formaldehyde absorptions were detected 138 of them. 53 of the formaldehyde absorptions were newly detected. We noted a poor correlation between the methanol and formaldehyde intensities, an indication that the signals (though arise from about the same regions) are enhanced by different mechanisms. Our results show higher detection rates of the formaldehyde lines for sources with stronger methanol signals. The strongest formaldehyde absorptions were associated with IRAS sources and IRDCs that have developed HII regions, and that do not have EGOs.  相似文献   

2.
Observations of the circumstellar maser emission from the long-period variable star Y Cas in the 1.35-cm water-vapor line are presented. The observations were performed with the RT-22 radio telescope at the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev Physical Institute, Russian Academy of Sciences) in the period 1982–2005. The variations in the integrated flux Fint in the H2O line correlate with the visual light curve of the star. The phase delay Δ? between the Fint variations and the light curve is 0.2–0.4P (P is the period of the star). The H2O maser Y Cas belongs to transient sources: peaks of high maser activity alternate with intervals of a low emission level when the H2O-line flux does not exceed (0.1–0.5) × 10?20 W m?2. A “superperiod” of ~5.7 yr was found in the occurrence of activity peaks. A particularly strong maximum of maser radio emission took place at the end of 1997, when the flux Fint reached 15.6 × 10?20 W m?2. A model for the H2O maser variability in Y Cas is discussed. The variability is caused by a periodic action of shock waves driven by stellar pulsations. The H2O maser flares may be associated with short-lived episodes of enhanced mass loss by the star or with the propagation of a particularly strong shock wave when a planet orbiting the star passes through its periastron.  相似文献   

3.
The collisional pumping of H216O and H218O masers in hot dense gas-dust clouds has been simulated numerically. New data on the rate coefficients for collisional transitions from Faure et al. (2007) were used in the calculations. The possibility of detecting H218O emission in 22.2-GHz H216O maser sources is investigated. The medium is shown to become optically thick in the H218O lines for which an inverted level population is observed at H2O column densities of ∼1019–1020 cm−2. A simultaneous observation of H218O emission and H216O maser emission in the same source will allow the physical conditions in the gas-dust cloud to be refined.  相似文献   

4.
Recent studies of the star formation region BBW 36 and associated molecular clouds are presented. The 12CO (1-0) observations, carried out with the 15-m SEST (Swedish-ESO) telescope (Cerro La Silla, Chile), revealed the existence of cloud a, connected with BBW 36 and of cloud b, having elongation in SE-NW direction. A red-shifted molecular outflow with velocity ∼+5 km/s (with respect to cloud a), having a direction parallel to the line of sight, was also observed. VLA observations showed the presence of a source VLA 2 at 3.6 cm with an elongation in the N-S direction. It is suggested that the VLA 2 source coincides with a dust disc (surrounding the object BBW 36). The star 3, which is one of the YSOs in the star-forming region BBW 36 and is connected with a bright comma-like nebula, can be the source of the molecular outflow. The star 3 has very high IR colors and is associated with an IRAS point source IRAS 07280-1829, which has IR colors, typical for an IRAS point source, connected with a water maser. On the 2MASS K image of BBW 36 we can see the existence of a bright nebula; a group of stars is embedded in that nebula, and among these stars there are stars with dust discs (or envelopes). On the 2MASS K image several spiral jets are also present, some of them with a condensation at the end. Published in Astrofizika, Vol. 51, No. 3, pp. 469–477 (August 2008).  相似文献   

5.
We analyzed the monitoring data for the maser S255 obtained in the H2O line at λ=1.35 cm with the 22-m radio telescope at the Pushchino Radio Astronomy Observatory in 1981–2002. The maser was most active during 1998–2002. Since 2001, the H2O spectra have been extended and complex; their triplet structure has been disrupted. The extent of the spectra was 24 km s?1 (from ?6 to 18 km s?1). We calculated orbital parameters for some of the components. We estimated the mass of the central star to be (6–7)M and the outer Keplerian-disk radius to be ~160 AU.  相似文献   

6.
We analyze our monitoring data for the water-vapor maser in the source W31(2), associated with a region of vigorous star formation, a cluster of OB stars. The monitoring was performed with the 22-m radio telescope at Pushchino Radio Astronomy Observatory during 1981–2004. The variability of the H2O maser in W31(2) was found to be cyclic, with a mean period of 1.9 yr. Two flares were most intense (superflares): in 1985–1986 and 1998–1999. In each activity cycle, we observed up to several short flares, subpeaks. The fluxes of many emission features during the flares were correlated. We also observed successive activation of individual emission features in order of increasing or decreasing radial velocity, suggesting an ordered structure and, hence, a radial-velocity gradient of the medium. There is a clear correlation of the emission peaks of the main components in the spectra at radial velocities of ?1.7, ?1.3, 0.5, and 1.3 km s?1 with activity cycles and of the emission at VLSR < ?8 km s?1 with short flares. During the superflares, the emission in the low-velocity part of the H2O spectrum and a number of other phenomena related to coherent maser-emission properties were suppressed. The maser spots are assumed to form a compact structure, to have a common pumping source, and to be associated with an accretion flow onto the cluster of OB stars.  相似文献   

7.
We report multi-wavelength observations towards IRAS 16547–4247, a luminous infrared source with a bolometric luminosity of 6.2 × 104 L . Dust continuum observations at 1.2-mm indicate that this object is associated with a dust cloud with a size of about 0.4 pc in diameter and a mass of about 1.3 × 103 M . Radio continuum observations show the presence of a triple radio source consisting of a compact central object and two outer lobes, separated by about 0.3 pc, symmetrically located from the central source. Molecular hydrogen line observations show a chain of knots that trace a collimated flow extending over 1.5 pc. We suggest that IRAS 16547–4247 corresponds to a dense massive core which hosts near its central region a high-mass star in an early stage of evolution. This massive YSO is undergoing the ejection of a collimated stellar wind which drives the H2 flow. The radio emission from the lobes arises in shocks resulting from the interaction of the collimated wind with the surrounding medium. We conclude that the thermal jets found in the formation of low-mass stars are also produced in high-mass stars.  相似文献   

8.
The pumping of 22.2-GHz H2O masers in the circumstellar envelopes of asymptotic giant branch stars has been simulated numerically. The physical parameters adopted in the calculations correspond to those of the circumstellar envelope around IK Tau. The one-dimensional plane-parallel structure of the gas-dust cloud is considered. The statistical equilibrium equations for the H2O level populations and the thermal balance equations for the gas-dust cloud are solved self-consistently. The calculations take into account 410 rotational levels belonging to the five lowest vibrational levels of H2O. The stellar radiation field is shown to play an important role in the thermal balance of the gas-dust cloud due to the absorption of emission in rotational-vibrational H2O lines. The dependence of the gain in the 22.2-GHz maser line on the gas density and H2O number density in the gas-dust cloud is investigated. Gas densities close to the mean density of the stellar wind, 107?108 cm?3, and a high relative H2O abundance, more than 10?4, have been found to be the most likely physical conditions in maser sources.  相似文献   

9.
The combination of a time-dependent spherically symmetric hydrodynamic model of stellar atmosphere pulsation and a radiation transport code, which incorporates maser saturation theory, enabled us to synthesise maps and spectra of H2O maser emission from the circumstellar envelopes of long period variable stars. The synthetic maps and spectra compare favourably with observed 22, 321 and 325 GHz H2O maser emission. As is observed in H2O maser regions the peak emission occurs between 3–8 stellar radii from the star. The calculated H2O maser regions are in conditions of nH2 = 106 − 108 cm−3, assuming a fractional abundance of 10−4; kinetic temperatures of 550–3000 K; dust ensemble temperatures of 500–1200 K and an accelerating velocity field. The IR radiation field is explicitly included in the radiation transport model, incorporating the latest absorption efficiency data for silicates from Draine. We reproduce the features seen in high angular resolution MERLIN spectral line datacubes. This shows that a mass outflow model which extends the photosphere using pulsations and incorporates radiation pressure on silicate based dust particles can produce the observed data on small (10-mas) angular scales. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

11.
Interstellar H2O and OH masers associated with massive star-forming regions can be classified into three morphological types: isolated H2O masers; isolated OH masers; and spatially overlapping OH/H2O maser groups. In a large sample of star-forming regions the total number of maser groups of each type is approximately equal. In order to account for these statistics we propose a pumping scheme based on a broadband radiative pump which produces inverted populations of both OH and H2O masers by a process involving predissociation and dissociation of H2O. This scheme overcomes some drawbacks of earlier radiative pumping models, and may account for the association of OH and H2O masers in massive star forming regions.  相似文献   

12.
The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H2O emission. Single-dish monitoring and high-resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclear jets with dense molecular gas and to investigate the circumnuclear environment of active galactic nuclei (AGN). Accretion disks with radii of 0.1–3 pc were mapped and masses of nuclear engines of order 106–108 M were determined. So far, 50 extragalactic H2O maser sources have been detected, but few have been studied in detail.  相似文献   

13.
In this study we investigated the effects of external trigger on the characteristics of young stellar objects (YSOs) associated with cometary globules (CGs). We made optical spectroscopy of stars associated with star-forming CGs. We find that the masses of the most massive stars associated with CGs are correlated with the masses of the parent cloud but they are systematically larger than expected for clouds of similar mass from the relation M max-star=0.33M cl 0.43 given by Larson (Mon. Not. R. Astron. Soc. 200:159, 1982). We have also estimated the luminosities of the IRAS sources found associated with CGs as a function of cloud mass and then compared them with those of the IRAS sources found associated with isolated opacity class 6 clouds (isolated and relatively away from large star forming regions). We find that the luminosities of IRAS sources associated with CGs are larger than those of the opacity class 6 clouds. These findings support results from recent simulations in which it was shown that the Radiation Driven Implosion (RDI) process, believed to be responsible for the cometary morphology and star formation, can increase the luminosity 1–2 orders of magnitudes higher than those of protostars formed without external triggering due to an increase in accretion rates. Thus implying that the massive stars can have profound influence on the star formation in clouds located in their vicinity.  相似文献   

14.
During the period 1979–1999, we investigated the hyperfine structure of the H2O supermaser region located in the core of the molecular cloud OMC-1 in Orion KL. The angular resolution is 0.1 mas, which corresponds to 0.045 AU. The detected structure, which consists of a central object, an accretion disk, a bipolar outflow, and an envelope, corresponds to the initial formation stage of a low-mass star. The accretion disk is at the stage of separation into groups of concentric rings. The bipolar outflow is a neutral, highly collimated jet of accreted material that includes H2O molecules and dust grains in the icy envelope. The injector is a bright compact source with a size <0.05 AU and a brightness temperature Tb≈1017 K. The velocity of the bipolar outflow is v≈10 km s?1. The rotation velocity of the jet is vrot≈1.5 km s?1. The jet has the shape of a conical helix due to the precession of the rotation axis. Occasionally, dense blobs (comet-shaped bullets) are ejected. The envelope amplifies the radio emission from the structures in a ~0.5 km s?1 maser window band with velocities v≈7.65 km s?1 by more than two orders of magnitude.  相似文献   

15.
A star formation region connected with SNO 41 is investigated. The observations of this region were carried out in the 12CO (1-0) line and in the 1.2-mm (with SIMBA) with the 15-m SEST mm telescope (Cerro La Silla, Chile). A blue shifted outflow is revealed from the 12CO(1-0) observations, while a bipolar outflow is apparent from the 1.2-mm SIMBA image. In CO it seems that a very faint dust envelope around SNO 41 probably exists, which is expanding with a velocity of ∼10.5 km/s. The distance to SNO 41 is estimated as ∼1500 pc. There are outflows also present in 2MASS images. A spiral jet has a condensation (resembling a HH object) at the end. Another jet has a discontinuity and a bow-shock-like structure on it. In 2MASS images there are also spots resembling HH objects. In this region there is also a rather luminous point source (IRAS 08546-4254), which has IR colors typical for an YSO connected with a water maser. The detection of a strong CS (2-1) line emission toward IRAS 08546-4254, with the same velocity as the CO line, shows the existence of a high density core of molecular gas associated to this source. A methanol maser is also associated with that IRAS source. The existence of CS line emission and a methanol maser (at 6.669 Ghz) is an indication of the presence of a very young massive star. It is not excluded that this IRAS source is the center of outflows mentioned above, because this source coincides with the center of the 1.2-mm SIMBA image and also with the place of origin of the jet with bow-shock-like structure. Published in Astrofizika, Vol. 50, No. 1, pp. 5–15 (February 2007).  相似文献   

16.
We present the results of our study of the H2O maser emission from the source W75N, which is associated with a star-forming region, between November 1994 and March 1999. The observations were carried out with the RT-22 radio telescope of the Pushchino Radio Astronomy Observatory (Lebedev Physical Institute). The maser emission in 1994–1999 can be represented as a superposition of flares of separate components with a duration from two to six months, which occurred mainly in the radial-velocity range 8–17.5 km s?1. We detected a regular drift of the velocity centroid from 13 to 9 km s?1 and an abrupt change in its velocity from 9 to 5 km s?1, which took place at the initial stage of maser activity. Based on the variability of the total H2O flux in all years of our observations of W75N (from December 1979 through March 1999), we conclude that the long-period variability of the water-vapor maser emission has a period of ~11.5 years. We give arguments that this variability is mainly associated with the most compact group of maser spots, whose positions coincide with the position of the continuum source VLA 2.  相似文献   

17.
In this paper the results of multiwavelength investigation of an unusual nebular object SNO 85 are presented. In 2MASS images this object looks like a star with a jet. In DSS2 R image the end of the jet is connected with an interesting symmetric structure, consisting of arcs and loops. Such a structure is seen also in the opposite direction from the central star; it favors the existence of two opposite jets, which repeat the rotation and precession movements of the central star. The results of 12CO observations of the dark nebula LDN 288, connected with SNO 85, are also given. From these observations the following results were obtained: SNO 85 is situated in a dense condensation and the neighbor B type star GSC 0625400181 is surrounded by a hollow cavity. The velocity of the dark cloud is ∼2.5 km/s and its distance is estimated as (380–990) pc. The object SNO 85 itself is associated with an IRAS point source IRAS 17547-1832, the infrared colors of this source are typical for a non-evolved source embedded in the dense dark cloud. This region is perhaps a star formation one because there is also another star with a straight jet in the vicinity of B type star GSC 0625400181. Published in Astrofizika, Vol. 49, No. 4, pp. 621–629 (August 2006).  相似文献   

18.
We present the results of our observations of the H2O maser emission toward the complex source ON2 associated with an active star-forming region. The observations were performed in a wide range of radial velocities, from ?75 to 90 km s?1. We have detected an emission with flux densities of 9.2, 4, and 26 Jy at radial velocities of ?33.5, ?24.4, and ?18.8 km s?1, respectively, at which no emission has been observed previously. The detected emission is most likely associated with a hitherto unknown cluster of maser spots located between the northern (N) and southern (S) components of the source ON2 (closer to the northern one). This cluster may be associated with one of the three CO molecular outflows in the ON2 region. We have also detected an emission at ?22 and ?14.5 km s?1 in N and at 12.6 km s?1 in S, which has extended significantly the velocity ranges of the maser emission in these sources and allowed their models to be improved.  相似文献   

19.
The infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with the SEST (Cerro La Silla, Chile) telescope on the 2.6-mm 12CO spectral line and with SIMBA on the 1.2-mm continuum are given. The 12CO observations revealed the existence of several molecular clouds, two of which (clouds 1 and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω = 4.6 · 10−14 s−1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has also been found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colors typical for a non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shows the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that the possibility that this extension might also be rotating like cloud 2 is not excluded. In the vicinity of these extensions there are condensations resembling HH objects. Published in Astrofizika, Vol. 51, No. 1, pp. 29–40 (February 2008).  相似文献   

20.
Based on a SO and C18O survey of dense molecular-cloud cores in regions of massive star formation (selected by the presence of H2O maser emission), we estimate the frequency of occurrence of high-velocity outflows in these regions and their parameters. The presence of extended SO-line wings (compared to C18O) is considered to be indicative of outflows. We estimate the outflow parameters (mass, momentum, and kinetic energy) from optically thin C18O lines, which increases the reliability of these estimates. According to this approach, high-velocity outflows were detected in ~40% of the observed objects, which is a lower limit on the frequency of their occurrence. There is a clear correlation between the outflow mass, momentum, and kinetic energy, on the one hand, and the bolometric luminosity of the associated infrared sources, on the other hand. The slope of the correlations is close to unity. Their comparison with similar correlations of the mass-loss rate, force, and mechanical luminosity with the bolometric luminosity shows that the spread in outflow dynamical age is small and that this age has no systematic correlation with the infrared luminosity. The mean outflow dynamical age that can be obtained from this comparison is ~7×1013 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号