首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
It is shown that there is linearity between the thermal pressure PTH and T between the Debye temperature θ and some high temperature T1. T1 has been measured at 1 atm and is reported for several minerals including, for example, MgO (1300 K) and forsterite (1200 K). The change in thermal pressure from room temperature for five solids, so far measured, indicate striking linearity with T at high temperatures.It is further shown that the value of T1 increases greatly as the pressure increases. It is therefore concluded that PTH is probably linear with T for mantle minerals under mantle conditions. The proportionality constant is derived from the measurements of thermal expansivity and bulk modulus at high temperature and zero pressure.The argument is then reversed. Assuming that the thermal pressure is in fact linear with T for the various shells in a planet, the resulting density and temperature profile of the planet is derived. The resulting density profile of the Earth compares favorably with corresponding values of recent seismic profiles.  相似文献   

2.
The thermodynamic properties of the lower mantle are determined from the seismic profile, where the primary thermodynamic variables are the bulk modulus K and density ρ. It is shown that the Bullen law (KP) holds in the lower mantle with a high correlation coefficient for the seismic parametric Earth model (PEM). Using this law produces no ambiguity or trade-off between ρ0 and K0, since both K0 and K0 are exactly determined by applying a linear K?ρ relationship to the data. On the other hand, extrapolating the velocity data to zero pressure using a Birch-Murnaghan equation of state (EOS) results in an ambiguous answer because there are three unknown adjustable parameters (ρ0, K0, K0) in the EOS.From the PEM data, K = 232.4 + 3.19 P (GPa). The PEM yields a hot uncompressed density of 3.999 ± 0.0026 g cm?3 for material decompressed from all parts of the lower mantle. Even if the hot uncompressed density were uniform for all depths in the lower mantle, the cold uncompressed mantle would be inhomogeneous because the decompression given by the Bullen law crosses isotherms; for example, the temperature is different at different depths. To calculate the density distribution correctly, an isothermal EOS must be used along an isotherm, and temperature corrections must be placed in the thermal pressure PTH.The thermodynamic parameters of the lower mantle are found by iteration. Values of the three uncompressed anharmonic parameters are first arbitrarily selected: α0 (hot), the coefficient of thermal expansion; γ0, the Grüneisen parameter; and δ, the second Grüneisen parameter. Using γ0 and the measured ρ0 (hot) and K0 (hot), the values of θ0 (Debye temperature) and q = dlnγ/dlnρ are found from the measured seismic velocities. Then from (αKT)0 and q the thermal pressure PTH at all high temperatures is found. Correlating PTH against T to the geotherm for the lower mantle, PTH is found at all depths Z. The isothermal pressure, along the 0 K isotherm, at every Z is found by subtracting PTH from the measured P given by the seismic model. Using the isothermal pressure at depth Z, the solution for the cold uncompressed density ρ0C and the cold uncompressed bulk modulus, KT0 is found as a trace in the KT0?ρ0C plane. A narrow band of solutions is then found for ρ0C and KT0 at all depths.The thermal expansion at all T is found from [ρ0C ? ρ0 (hot)/ρ0C. From Suzuki's formula, the best fit to the thermal expansion determines γ0 and α0 (hot). When the values of these two parameters do not agree with the original assumptions, the calculation is repeated until they do agree. In this way all the important thermodynamic parameters are found as a self-consistent set subject only to the assumptions behind the equations used.  相似文献   

3.
Summary For the discussion of the physico-chemical state and the phase transitions in the earth interior it is necessary to compare the results of geophysical field measurements with geophysical solid state investigations in the laboratory under extremep,T-conditions. In correspondence with the theoretical studies about the behaviour of the materials in the deep earth we investigated two groups of materials: (I) different types of rocks with reference to their elastic and thermal behaviour under extreme conditions, (II) simple compounds of elements which belong possibly to the representatives of the deep mantle and the earth interior. The method for measurement of the thermal diffusivity and the influence of anisotropy on the propagation of elastic waves in different rocks is described. The results of the dependence of the electric resistivity on pressure and temperature on synthetic and natural chalkogenides of the 3d-transition metals are discussed.Publication No. 474 of the Central Earth Physics Institute, Academy of Sciences, 15 Potsdam, Telegrafenberg, GDR.  相似文献   

4.
Abstract

Large errors in peak discharge estimates at catchment scales can be ascribed to errors in the estimation of catchment response time. The time parameters most frequently used to express catchment response time are the time of concentration (TC), lag time (TL) and time to peak (TP). This paper presents a review of the time parameter estimation methods used internationally, with selected comparisons in medium and large catchments in the C5 secondary drainage region in South Africa. The comparison of different time parameter estimation methods with recommended methods used in South Africa confirmed that the application of empirical methods, with no local correction factors, beyond their original developmental regions, must be avoided. The TC is recognized as the most frequently used time parameter, followed by TL. In acknowledging this, as well as the basic assumptions of the approximations TL = 0.6TC and TCTP, along with the similarity between the definitions of the TP and the conceptual TC, it was evident that the latter two time parameters should be further investigated to develop an alternative approach to estimate representative response times that result in improved estimates of peak discharge at these catchment scales.
Editor Z.W. Kundzewicz; Associate editor Qiang Zhang  相似文献   

5.
Flow regulation is widely known to modify the thermal regime of rivers. Here, we examine the sensitivity of an empirical approach, the Equilibrium Temperature Concept (ETC), to detect both the effects of hydraulic infrastructures on the annual thermal cycle and the recovery of the thermal equilibrium with the atmosphere. Analysis was undertaken in a Pyrenean river (the Noguera Pallaresa, Ebro basin) affected by a series of reservoirs and hydropower plants. Equilibrium temperature (Te) is defined as the water temperature (Tw) at which the sum of all heat fluxes is zero. Based on the assumption of a linear relationship between Te and Tw, we identified changes in the TeTw regression slope, used as an indicator of a thermal alteration in river flow. We also assessed the magnitude of the alteration by examining the regression slope and its statistical significance. Variations in the regression parameters were used as indicators of the influence of factors other than atmospheric conditions on water temperature. Observed Tw showed a linear relationship with Te at all river stations. However, the slopes of the TeTw relationship appeared to be lower in the reaches downstream from hydraulic infrastructures, particularly below large dams. A seasonal analysis indicated that TeTw relationships had higher slopes and lower p‐values during autumn, while no significant differences were found at other seasons. Although thermal characteristics did not strongly depend on atmospheric conditions downstream of hydraulic infrastructures, the river recovered to pre‐alteration conditions with distance downstream, indicating the natural tendency of water to attain thermal equilibrium with the atmosphere. Accepting associated uncertainties, mostly because of the quality of the data and the lack of consideration of other factors influencing the thermal regime (e.g. discharge), ETC appears to be a simple and effective method to identify thermal alterations in regulated rivers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Despite uncertainties and errors in measurement, observed peak discharges are the best estimate of the true peak discharge from a catchment. However, in ungauged catchments, the catchment response time is a fundamental input to all methods of estimating peak discharges; hence, errors in estimated catchment response time directly impact on estimated peak discharges. In South Africa, this is particularly the case in ungauged medium to large catchments where practitioners are limited to use empirical methods that were calibrated on small catchments not located in South Africa. The time to peak (TP), time of concentration (TC) and lag time (TL) are internationally the most frequently used catchment response time parameters and are normally estimated using either hydraulic or empirical methods. Almost 95% of all the time parameter estimation methods developed internationally are empirically based. This paper presents the derivation and verification of empirical TP equations in a pilot scale study using 74 catchments located in four climatologically different regions of South Africa, with catchment areas ranging from 20 km2 to 35 000 km2. The objective is to develop unique relationships between observed TP values and key climatological and geomorphological catchment predictor variables in order to estimate catchment TP values at ungauged catchments. The results show that the derived empirical TP equation(s) meet the requirement of consistency and ease of application. Independent verification tests confirmed the consistency, while the statistically significant independent predictor variables included in the regressions provide a good estimation of catchment response times and are also easy to determine by practitioners when required for future applications in ungauged catchments. It is recommended that the methodology used in this study should be expanded to other catchments to enable the development of a regional approach to improve estimation of time parameters on a national‐scale. However, such a national‐scale application would not only increase the confidence in using the suggested methodology and equation(s) in South Africa, but also highlights that a similar approach could be adopted internationally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Proposed is a new definition of earthquake response spectra, which takes account of the number of response cycles N. The Nth largest amplitude of absolute acceleration response of a linear oscilator with natural period T and damping ratio h, which is subjected to ground motion at its base, is defined as SA(T, h, N). By defining a reduction factor η(T, h, N) as SA(T, h, N)/SA(T, h, 1), characteristics of η(T, h, N) were investigated based on 394 components of strong motion records obtained in Japan. Two practical empirical formulae to assess the reduction factor η(T, h, N) are proposed.  相似文献   

8.
Volume measurements for magnesiowüstite (Mg0.6Fe0.4)O, were carried out up to pressures of 10.1 GPa in the temperature range 300–1273 K, using energy-dispersive synchrotron X-ray diffraction. These data allow reliable determination of the temperature dependence of the bulk modulus and good constraint on the thermal expansitivity at ambient pressure which was previously not known for magnesiowüstite. From these data, thermal and elastic parameters were derived from various approaches based on the Birch–Murnaghan equation of state (EOS) and on the relevant thermodynamic relations. The results from three different equations of state are remarkably consistent. With (∂KT/∂P)T fixed at 4, we obtained K0=158(2) GPa, (∂KT/∂T)P=−0.029(3) GPa K−1, (∂KT/∂T)V=−3.9(±2.3)×10−3 GPa K−1, and αT=3.45(18)×10−5+1.14(28)×10−8T. The K0, (∂KT/∂T)P, and (∂KT/∂T)V values are in agreement with those of Fei et al. (1992) and are similar to previously determined values for MgO. The zero pressure thermal expansitivity of (Mg0.6Fe0.4)O is found to be similar to that for MgO (Suzuki, 1975). These results indicate that, for the compositional range x=0–0.4 in (Mg1−xFex)O, the thermal and elastic properties of magnesiowüstite exhibit a dependence on the iron content that is negligibly small, within uncertainties of the experiments. They are consequently insensitive to the Fe–Mg partitioning between (Mg, Fe)SiO3 perovskite and magnesiowüstite when applied to compositional models of the lower mantle. With the assumption that (Mg0.6Fe0.4)O is a Debye-like solid, a modified equation of heat capacity at constant pressure is proposed and thermodynamic properties of geophysically importance are calculated and tabulated at high temperatures.  相似文献   

9.
Although the bulk moduli (KT0) of silicate melts have a relatively narrow range of values, the pressure derivatives of the isothermal bulk modulus (KT0) can assume a broad range of values and have an important influence on the compositional dependence of the melt compressibility at high pressure. Based on the melt density data from sink/float experiments at high pressures in the literature, we calculate KT0 using an isothermal equation of state (EOS) (e.g., Birch–Murnaghan EOS and Vinet EOS) with the previously determined values of room-pressure density (ρ0) and room-pressure bulk modulus (KT0). The results show that best estimates of KT0 vary considerably from ~ 3 to ~ 7 for different compositions. KT0 is nearly independent of Mg # (molar Mg/(Mg + Fe)), but decreases with SiO2 content. Hydrous melts have anomalously small KT0 leading to a high degree of compression at high pressures. For anhydrous melts, KT0 is ~ 7 for peridotitic melts, ~ 6 for picritic melts, ~ 5 for komatiitic melts, and ~ 4 for basaltic melts.  相似文献   

10.
Hydrocarbon source systems and formation of gas fields in Sichuan Basin   总被引:1,自引:0,他引:1  
The formation of large and middle gas fields in Sichuan Basin is investigated based on source wntrolling theory and hydrocarbon source systems. It is indicated that Є1, Sl, P1, P2 and T3 are the main source beds and Є1/Z2 d, C2 h/S1, P1/P2, P2 ch/P2, T1,2/P,T3 x /T3 x are important hydrocarbon source systems in the basin. All these source systems are the prospective formations and exploration spaces of large and middle gas fields. It is also emphasized that hydrocarbon generation intensity is the most important geochemical factor to estimate large and middle gas fields. Project supported by the “85–102” Chinese National Key Science and Technology Project.  相似文献   

11.
In this paper we suggest that conditional estimator/predictor of rockburst probability (and rockburst hazard, P T (t)) can be approximated with the formula P T (t) = P 1(θ 1)…P N (θ N P dyn T (t), where P dyn T (t) is a time-dependent probability of rockburst given only the predicted seismic energy parameters, while P i (θ i ) are amplifying coefficients due to local geologic and mining conditions, as defined by the Expert Method of (rockburst) Hazard Evaluation (MRG) known in the Polish mining industry. All the elements of the formula are (approximately) calculable (on-line) and the resulting P T value satisfies inequalities 0 ≤ P T (t) ≤ 1. As a result, the hazard space (0–1) can be always divided into smaller subspaces (e.g., 0–10−5, 10−5–10−4, 10−4–10−3, 10−3–1), possibly named with symbols (e.g., A, B, C, D, …) called “hazard states” — which saves the prediction users from worrying of probabilities. The estimator P T can be interpreted as a formal statement of (reformulated) Comprehensive Method of Rockburst State of Hazard Evaluation, well known in Polish mining industry. The estimator P T is natural, logically consistent and physically interpretable. Due to full formalization, it can be easily generalized, incorporating relevant information from other sources/methods.  相似文献   

12.
We have developed a thermodynamic model for the determination of the closure temperature (TC) at which the minerals defining an internal isochron in RbSr, or similar, geochronological system were set with a geochronological clock. It is shown that the equilibrium fractionation of87Rb and87Sr between a pair of minerals at TC [KD(87Rb87Sr)C] is given by the ratio of the quantity (87Rb/86Sr) in the two minerals as measured at the present time. KD(87Rb-87Sr), which equals the element distribution coefficient KD(RbSr) under equilibrium condition, can be calibrated as a function of temperature, and compared with the retrieved value of KD(87Rb87Sr)C in a natural pair to obtain TC. The various mineral pairs defining an internal isochron will yield concordant or discordant values of TC depending on whether or not they closed simultaneously with respect to the diffusion of Rb and Sr. Both types of results are expected, and are important in the analyses of the evolutionary history of the host rocks. Preliminary analyses of the published data in the RbSr system suggest a fairly wide range of TC even for the same mineral pair, reflecting differences in the cooling rates and physico-chemical environments of the host rocks.  相似文献   

13.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

14.
The objective of this paper is to identify the first mode ground period Tg, at each interesting site along Taiwan High Speed Rail (THSR) route, and further, to determine the site-dependent design response spectrum for particular sites with Tg larger than 1 s. In this paper, a linear model of shear wave propagating in a multi-layered half-space is developed to identify the first mode ground period Tg of an interesting site on the basis of the field bore hole data. Furthermore, for each one of the strong ground motion observation stations within the Chiayi-Tainan area, the first mode ground period Tg was identified by either coda waves or pre-event ambient vibrations from the seismograms. In addition, the site-specific parameter Cv in defining the normalized response spectrum was also determined based on the observed strong ground motions at the specified observation station, and hence the empirical function between Tg and Cv can be regressed for this interesting area. Therefore, for a particular site along THSR route within the Chiayi-Tainan area, the site-specific parameter Cv can be determined from the regressed empirical function by the identified first mode ground period Tg, and further, used to develop the site-dependent design response spectrum.  相似文献   

15.
The potential distribution and the wave propagation in a horizontally stratified earth is considered and the analogy of the mathematical expression for seismic transfer function, electromagnetic and electric kernel functions, and magnetotelluric input impedance is discussed. Although these specific functions are conveniently treated by a separate expression in each method, it is indicated that the function for seismic and electromagnetic methods is mathematically the same with a change in the physical meaning of the variables from one method to the other. Similarly, the identity of the mathematical expressions of the resistivity kernel function and magnetotelluric input impedance is noticed. In each method a specific geophysical function depends on the thickness and the physical properties of the various layers. Every specific function involves two interdependent fundamental functions, that is Pn and Qn, or Pn and P*n, having different physical meaning for different methods. Specific functions are expressible as a ratio Pn/Qn or P*n/Pn. Fundamental functions may be reduced to polynomials. The fundamental polynomials Q*n and P*n describing the horizontally stratified media are a system of polynomials orthogonal on the unit circle, of first and second order, respectively. The interpretation of geophysical problems corresponds to the identification of the parameters of a system of fundamental orthogonal polynomials. The theorems of orthogonal polynomials are applied to the solution of identification problems. A formula for calculating theoretical curves and direct resistivity interpretation is proposed for the case of arbitrary resistivity of the substratum. The basic equation for synthetic seismograms is reformulated in appendix A. In appendix B a method is indicated for the conversion of the seismic transfer function from arbitrary to perfectly reflective substratum.  相似文献   

16.
The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core.Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole.Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20°C less than the present measured temperature curve at 590.1-m depth to as much as 90°C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114° and 265°C) plot above the reference surface boiling-point curve for pure water assuming hydrostatic conditions; however, the absence of evidence for boiling in the fluid inclusions indicates that at the time the minerals formed, the ground surface must have been at least 80 m higher than at present and underwent stream erosion to the current elevation. Near-surface mixed-layer illite-smectite is closely associated with barite and appears to have formed at about the same temperature range (about 120° to 200°C) as the fluid-inclusion Thvalues for barite. Fluid-inclusion Th values for calcite range between about 136° and 213°C. Several of the calcite Th values are significantly lower than the present measured temperature curve. The melting-point temperatures (Tm) of fluid-inclusion ice yield calculated salinities, ranging from near zero to as much as 5.4 wt. % NaCl equivalent, which suggest that much of the barite and calcite precipitated from fluids of significantly greater salinity than the present low salinity Platanares hot-spring water or water produced from the drill hole.  相似文献   

17.
The thermoelectric power (T.E.P.) or Seebeck effect of minerals is best characterized by the fact that a great many of the Earth's important minerals are semiconducting oxides. Outside the very active research area concerned with oxide semiconductors there have been few determinations of the T.E.P. of minerals, let alone their P, T-dependence. Most minerals have low electrical conductivities and relatively high thermal conductivities, and despite very high Seebeck voltages, are thus generally rather inefficient T.E.P. generators. Measurements of the T.E.P. tie in well with studies of the electrical conductivity, thermal conductivity, optical absorption, and diffusion. They provide significant information on the charge carrier concentrations, type of conduction mechanism, band structure, and phonon scattering.Junctions capable of generating T.E.P. include those between materials of different chemical composition, different content and concentration of impurities and defects, different crystal structure or orientation, different states of stress and strain, and reactive junctions or chains of junctions. Considering the local balance of flux of heat and other forms of energy through any of the conduction channels we may visualize as traversing the minerals in the mantle, surely, the conduction channels must involve all of the different types of heterogeneous junctions between minerals. We are, therefore, interested to investigate to what extent, in channels or media subjected to gradients of temperature, electric potential, concentration of chemical constituents and stress or strain, the heat flux density is not identical with the total energy flux density. Measurements of the Seebeck coefficient (S = dE/dT) and preliminary interpretations are discussed with reference to: (1) a simple oxide relative to Pt (corundum); (2) a complex oxide relative to Pt (garnet, almandite); (3) a couple formed of two oxides (corundum-almandite); (4) a couple formed of two minerals with different orientations (quartza-quartzc), and two minerals of different impurity and defect concentrations (quartz-amethyst); and (5) a chain of reactive junctions analogous to oxidation potentials (iron-magnetite, hematite, iron).  相似文献   

18.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

19.
The elastic moduli of single-crystal CaF2, SrF2 and BaF2 have been determined by the ultrasonic pulse superposition technique as a function of temperature from T = 298 to T = 650°K. These new data are consistent with other data obtained by ultrasonic pulse techniques in the region of room temperature and are superior to previous high-temperature data from resonance experiments. The elastic moduli (c) are represented by quadratic functions in T over the experimental temperature range with the curvature in the same sense for all the moduli. Evaluation of the temperature derivatives of the elastic moduli at constant volume indicates that the dominant temperature effect is extrinsic for (?KS/?T)P and intrinsic for (/?T)P, where KS and μ are the isotropic bulk and shear moduli, respectively. For the series CaF2SrF2BaF2, |(?c/?T)p| decreases with increasing molar volume for all moduli; however there are no theoretical or empirical grounds on which to derive a simple relationship between (?c/?T)P and crystallographic parameters.  相似文献   

20.
Microthermometric measurements were obtained for 618 fluid inclusions in hydrothermal quartz, fluorite and calcite and magmatic quartz phenocrysts in intracaldera tuffs from the VC-2A core hole in order to study evolutionary processes of the Sulphur Springs hydrothermal system in the Valles caldera. Relatively high Th values in samples from shallow depths indicate erosion of about 200 m of caldera fill since deposition of hydrothermal minerals at shallow depths in the Sulphur Springs hydrothermal system, accompanied by a descent in the water table of the liquid-dominated reservoir. For samples collected below the current water level of the well, the minimum values of homogenization temperature (Th) fit the present thermal profile, whereas minimum Th values of samples from above the water level are several tens of degrees higher than the present thermal profile and fit a paleo-thermal profile following the boiling point curve for pure water, as adjusted to 92 °C at 20 m below the present land surface. This is attributed to development of an evolving vapor zone that formed subsequent to a sudden drop in the water table of the liquid-dominated reservoir. We suggest that these events were caused by the drainage of an intracaldera lake when the southwestern wall of the caldera was breached about 0.5 Ma. This model indicates that vapor zones above major liquid-dominated geothermal reservoirs can be formed due to dramatic changes in geohydrology and not just from simple boiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号