首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate the long time stability in Nekhoroshev’s sense for the Sun– Jupiter–Saturn problem in the framework of the problem of three bodies. Using computer algebra in order to perform huge perturbation expansions we show that the stability for a time comparable with the age of the universe is actually reached, but with some strong truncations on the perturbation expansion of the Hamiltonian at some stage. An improvement of such results is currently under investigation.  相似文献   

2.
Kubo (Celest Mech Dyn Astron 110:143–168, 2011) investigated the kinematical structure of the perturbation in the rotation of the elastic Earth due to the deformation caused by the outer bodies. In that paper, while the mechanism for the perturbation of the figure axis was made clear, that for the rotational axis was not shown explicitly. In the present study, following the same method, the structure of the perturbation of the rotational axis is investigated. This perturbation consists of the direct perturbation and the convective perturbation. First the direct perturbation is shown to be (AC)/A times as large as that of the figure axis, coinciding with the analytical expressions obtained in preceding studies by other authors. As for the convective perturbation, which appears only in the perturbation of the rotational axis but not in that of the figure axis, it is shown to be (AC)/A times the angular separation between the original figure axis and the induced figure axis produced by the elastic deformation, A and C being the principal moments of inertia of the Earth. If the perturbing bodies are motionless, the conclusion of Kubo (Celest Mech Dyn Astron 105:261–274, 2009) holds strictly, i.e. the sum of the direct and the convective perturbations of the rotational axis coincides with the perturbation of the figure axis.  相似文献   

3.
We compute the normal forms for the Hamiltonian leading to the epicyclic approximations of the (perturbed) Kepler problem in the plane. The Hamiltonian setting corresponds to the dynamics in the Hill synodic system where, by means of the tidal expansion of the potential, the equations of motion take the form of perturbed harmonic oscillators in a rotating frame. In the unperturbed, purely Keplerian case, the post-epicyclic solutions produced with the normal form coincide with those obtained from the expansion of the solution of the Kepler equation. In all cases where the perturbed problem can be cast in autonomous form, the solution is easily obtained as a perturbation series. The generalization to the spatial problem and/or the non-autonomous case is straightforward.  相似文献   

4.
A closed-form first-order perturbation solution for the attitude evolution of a triaxial space object in an elliptical orbit is presented. The solution, derived using the Lie–Deprit method, takes into account gravity-gradient torque and is facilitated by an assumption of fast rotation of the object. The formulation builds on the earlier implementation of Lara and Ferrer, which assumes a circular orbit. The previously presented work—which assumes spin about an object’s axis of maximum inertia—is further extended by the explicit presentation of the transformations required to apply the solution to an object spinning about its axis of minimum inertia. Additionally, several numerical analyses are presented to more completely assess the utility of the solution. These studies (1) validate the elliptical solution, (2) assess the impact of varying the small parameter of the perturbation procedure, (3) analyze the assumption of fast rotation, and (4) apply the solution to the common and important scenario of a tumbling rocket body.  相似文献   

5.
It is well known that the equations governing the motion of a freely-rotating rigid body possess an exact analytical solution, involving Jacobi's elliptic functions. Andoyer (1923) and Deprit (1967) have shown that the problem may be very usefully reduced to a one-degree-of-freedom Hamiltonian system. When two of the body's principal moments of inertia are very nearly equal, the Hamiltonian system has the same form as the Ideal Resonance Problem. In earlier publications (Jupp, 1969, 1972, 1973), the author has constructed formal power-series solutions of the latter problem.In this article, the general solution of the Ideal Resonance Problem is employed to formulate a second-order formal series solution of the problem of a freely-rotating rigid body which has two of its principal moments of inertia differing by a small quantity. This solution is firstly expressed in terms of the mean elements, and then in terms of the initial conditions. The latter solution is global in nature being applicable over the whole phase plane. It is demonstrated that the exact solution and the second-order formal series solution, written in terms of the initial conditions, differ by terms of at most third order in the small parameter, over the whole domain of possible motions. This serves as an important check on the general results published in the earlier articles.  相似文献   

6.
Preliminary mission design for planetary satellite orbiters requires a deep knowledge of the long term dynamics that is typically obtained through averaging techniques. The problem is usually formulated in the Hamiltonian setting as a sum of the principal part, which is given through the Kepler problem, plus a small perturbation that depends on the specific features of the mission. It is usually derived from a scaling procedure of the restricted three body problem, since the two main bodies are the Sun and the planet whereas the satellite is considered as a massless particle. Sometimes, instead of the restricted three body problem, the spatial Hill problem is used. In some cases the validity of the averaging is limited to prohibitively small regions, thus, depriving the analysis of significance. We find this paradigm at Enceladus, where the validity of a first order averaging based on the Hill problem lies inside the body. However, this fact does not invalidate the technique as perturbation methods are used to reach higher orders in the averaging process. Proceeding this way, we average the Hill problem up to the sixth order obtaining valuable information on the dynamics close to Enceladus. The averaging is performed through Lie transformations and two different transformations are applied. Firstly, the mean motion is normalized whereas the goal of the second transformation is to remove the appearance of the argument of the node. The resulting Hamiltonian defines a system of one degree of freedom whose dynamics is analyzed.  相似文献   

7.
The indicatrix of the variation problem is given (1) by the perturbation differential equation for the semi-major axis and eccentricity, and (2) by a relation between the momentum and eccentric anomaly. The Hamiltonian equations of an extremal solution, therefore, reduce to a navigation equation. The remaining perturbation equations for the longitude of perihelion and the mean longitude at epoch, finally, yield the time dependence that gives the most economic fuel consumption.  相似文献   

8.
Owing to its extremely slow rotation, Venus must be regarded as a triaxial body with differences of all three principal moments of inertia comparable in magnitude, thus rendering it a body essentially different from a rapidly rotating planet. The dynamical problem then arises of how such a body, with a rotation-period comparable with its orbital period, would be affected by couples exerted upon it by the gravitational action of the Sun. Equations for the rotatory motion are set up in a form suitable for numerical solution by machine-calculations, but the problem so presented can be adequately investigated only for a hypothetical planet with far larger differences of principal moments than could hold for Venus. Results obtained on this limited basis nevertheless suggest that for the actual planet the direction of the rotation axis may move almost randomly between the two hemispheres defined by the orbital plane and thus that the present direction near the south celestial pole of the orbit may be only a temporary situation. Order-of-magnitude considerations based on the equations of motion suggest that a time-scale of order 107 to 108 yr may on average be required for large changes in direction of the rotation axis to take place.  相似文献   

9.
An expansion of the Hamiltonian for the N-planet problem into a Poisson series using a system of modified (complex) Poincare´ canonical elements in the heliocentric coordinate system is constructed. The Lagrangian and Hamiltonian formalisms are used. The first terms in the expansions of the principal and complementary parts of the disturbing function are presented. Estimates of the number of terms in the presented expansions have been obtained through numerical experiments. A comparison with the results of other authors is made.  相似文献   

10.
We investigate the Cassini's laws which describe the rotational motion in a 1:1 spin-orbit resonance. When this rotational motion follows the conventional Cassini's laws, the figure axis coincides with the angular momentum axis. In this case we underline the differences between the rotational Hamiltonian for a 'slow rotating' body like the Moon and for a 'fast rotating' body like Phobos. Then, we study a more realistic rotational Hamiltonian where the angle J between the figure axis and the angular momentum axis could be different from zero. This Hamiltonian has not been studied before. We have found a new particular solution for this Hamiltonian which could be seen as an extension of the Cassini's laws. In this new solution the angle J is constant, which is not zero, and the precession of the angular momentum plane is equal to the mean motion of the argument of pericenter of the rotating body. This type of rotational motion is only possible when the orbital eccentricity of the rotating body is not zero. This new law enables describing in particular, the Moon mean rotational motion for which the mean value of the angle J is found to be equal to 103.9±0.7 s of arc.  相似文献   

11.
An explicit symplectic integrator is constructed for the problem of a rotating planetary satellite on a Keplerian orbit. The spin vector is fixed perpendicularly to the orbital plane. The integrator is constructed according to the Wisdom-Holman approach: the Hamiltonian is separated in two parts so that one of them is multiplied by a small parameter. The parameter depends on the satellite’s shape or the eccentricity of its orbit. The leading part of the Hamiltonian for small eccentricity orbits is similar to the simple pendulum and hence integrable; the perturbation does not depend on angular momentum which implies a trivial ‘kick’ solution. In spite of the necessity to evaluate elliptic function at each step, the explicit symplectic integrator proves to be quite efficient. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The 1:1 mean motion resonance may be referred to as the lowest order mean motion resonance in restricted or planetary three-body problems. The five well-known libration points of the circular restricted three-body problem are five equilibriums of the 1:1 resonance. Coorbital motion may take different shapes of trajectory. In case of small orbital eccentricities and inclinations, tadpole-shape and horseshoe-shape orbits are well-known. Other 1:1 libration modes different from the elementary ones can exist at moderate or large eccentricities and inclinations. Coorbital objects are not rare in our solar system, for example the Trojans asteroids and the coorbital satellite systems of Saturn. Recently, dozens of coorbital bodies have been identified among the near-Earth asteroids. These coorbital asteroids are believed to transit recurrently between different 1:1 libration modes mainly due to orbital precessions, planetary perturbations, and other possible effects. The Hamiltonian system and the Hill’s three-body problem are two effective approaches to study coorbital motions. To apply the perturbation theory to the Hamiltonian system, standard procedures involve the development of the disturbing function, averaging and normalization, theory of ideal resonance model, secular perturbation theory, etc. Global dynamics of coorbital motion can be revealed by the Hamiltonian approach with a suitable expansion. The Hill’s problem is particularly suitable for the studies on the relative motion of two coorbital bodies during their close encounter. The Hill’s equation derived from the circular restricted three-body problem is well known. However, the general Hill’s problem whose equation of motion takes exactly the same form applies to the non-restricted case where the mass of each body is non-negligible, namely the planetary case. The Hill’s problem can be transformed into a “canonical shape” so that the averaging principle can be applied to construct a secular perturbation theory. Besides the two analytical theories, numerical methods may be consulted, for example the approach of periodic orbit, the surface of section, and the computation of invariant manifolds carried by equilibriums or periodic orbits.  相似文献   

13.
We study a perturbed Newtonian two-body problem, in which the perturbation is due to a force field of constant magnitude but rotating direction. By considering this system as a perturbation of the non-rotating case a Melnikov-type analysis allows us to show the existence of horseshoes in the level sets of the Hamiltonian and the subsequent sensitive dependence on initial conditions and non-integrability. We discuss the consequences of these results for a particular planar restricted three-body problem.Supported by a grant from the Royal Swedish Academy of Sciences and AFOSR NM 91-0329.  相似文献   

14.
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.  相似文献   

15.
We present the secular theory of coplanar N -planet system, in the absence of mean motion resonances between the planets. This theory relies on the averaging of a perturbation to the two-body problem over the mean longitudes. We expand the perturbing Hamiltonian in Taylor series with respect to the ratios of semimajor axes which are considered as small parameters, without direct restrictions on the eccentricities. Next, we average out the resulting series term by term. This is possible thanks to a particular but in fact quite elementary choice of the integration variables. It makes it possible to avoid Fourier expansions of the perturbing Hamiltonian. We derive high-order expansions of the averaged secular Hamiltonian (here, up to the order of 24) with respect to the semimajor axes ratio. The resulting secular theory is a generalization of the octupole theory. The analytical results are compared with the results of numerical (i.e. practically exact) averaging. We estimate the convergence radius of the derived expansions, and we propose a further improvement of the algorithm. As a particular application of the method, we consider the secular dynamics of three-planet coplanar system. We focus on stationary solutions in the HD 37124 planetary system.  相似文献   

16.
The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin–Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.  相似文献   

17.
We shall establish a second order - with respect to a small parameter which is of the order of planetary masses - Uranus-Neptune canonical planetary theory. The construction will be through the Hori-Lie perturbation theory. We perform the elliptic expansions by hand, taking into account powers 0, 1, 2 of the eccentricity-inclination. Only the principal part of the planetary Hamiltonian will be taken into consideration. Our theory will be expressed in terms of the canonical variables of Henri Poincaré, referring the planetary coordinates to the Jacobi-Radau system of origin. Only U- N critical terms will be assumed as the periodic terms.  相似文献   

18.
Torque-free motion of a rigid body is integrable and its solution is expressed in terms of elliptic functions and elliptic integrals. The conventional analytical expression of the solution, however, is complicated and not suitable for hand-calculation. Recently the rotational motions of small celestial bodies in the solar system are frequently investigated by numerically integrating the equations of motion instead of using the analytical solution, since the numerical evaluation of the analytical and exact solution is a little bit difficult. As the observational accuracy of the rotational motions of the small bodies in the solar system is quite low, what we need for the reduction of these observations are rough estimates of the period of Eulerian motion ( or the free precession period) and the amplitudes of the main periodic terms. Here we give simple analytical expansions of torque-free motions for short- and long-axis modes, which are correct up to the second-order of a small parameter. These expressions include only trigonometric functions and are easily evaluated by hand calculation for estimates of the essential quantities from which we can determine a global rotational motion of the torque-free motion. They can also be used as the zero-th order solution in a perturbation method, when the motion is perturbed by external torques.  相似文献   

19.
Let a rigid satellite move in a circular orbit about a spherically symmetric central body, taking into account only the main term of the gravitational torque. We shall investigate and find all solutions of the following problem: Let the satellite be permitted to spin about an axis that is fixed in the orbit frame; the satellite need not be symmetric, the spin not uniform, and the spin axis not a principal axis of inertia. The complete discussion of this type of spin reveals that the cases found by Lagrange and by Pringle - and the well-known spin about a principal axis of inertia orthogonal to the orbit plane — are essentially the only ones possible; the only further (degenerate) case is uniform spin of a two-dimensional, not necessarily symmetric satellite about certain axes that are orthogonal to the plane containing the body and to the orbit of the satellite around the central body.  相似文献   

20.
Hamiltonian approximations generally result from series expansions and truncations at different orders. But other ways are possible, and some of them, as the one this paper tries to explore, can speed up Hamiltonian computations and prove useful for studies involving extensive developments, for example solar system bodies with complex dynamics or requiring accurate ephemeris for observational purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号