首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the results of wind tunnel experiments on models of nabkha, based on those studied in the Hotan River basin. Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation. Artificial vegetation of simulated Tamarix spp. was put on top of each model. Parameters of the shape, including height, width, and diameter of vegetated semi-spherical and conical nabkha, were measured in the Hotan River basin. Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6–14 m/s) to study the influence of vegetation on airflow patterns. Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds, retards airflow over the sand mounds, reduces airflow energy, eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope. Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha. This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area. The existence of vegetation makes fine materials in wind-sand flow to possibly deposit, and promotes nabkha formation. The imitative flow patterns of different morphological nabkhas have also been verified by on-site observation in the river basin. __________ Translated from Journal of Desert Research, 2007, 27(1): 15–19 [译自: 中国沙漠]  相似文献   

2.
Nebkhas (coppice dunes) have formed throughout the gobi desert regions of China in response to the decreased near-surface wind speed caused by vegetation, combined with deposition of aeolian sediment in and around the vegetation. Although nebkhas have been extensively studied on several land surfaces, they have not yet been fully described where they form in areas of gobi desert. Based on field investigations of nebkha morphology and adjacent land surface sediment content on and inside the surface of these dunes, the following were found: (i) the nebkhas that develop in gobi deserts consist of two types – dunes with or without a depositional tail (a shadow dune); (ii) the nebkhas in the area of gobi desert were smaller than those found in sandy deserts, oases, or other areas with a rich sediment source, with a mean height of 0.28 m, mean width 1.63 m and mean length 1.34 m; and (iii) the dune height, length and width were significantly positively linearly related to the vegetation height, length and width. These patterns were similar at all four of the study sites, but the relationships with dune width differed among the sites. The average particle-size distributions on and inside the vegetation did not differ between the four sites. However, significant spatial differences in the sediments on and inside the dunes indicate that nebkhas can capture both local and distant sediments driven by the wind. These findings suggest a potential role of nebkhas in dust emission, although this role must be confirmed in future research.  相似文献   

3.
ABSTRACT Permian aeolian sediments on the island of Arran are divisible into dune (including draa) and interdune deposits. Both types display a distinctive and unusually wide variation in grain size. The dominant features of the dune deposits are grainfall lamination, sandflow lamination, and inverse graded lamination associated with ripple-form lamination and normal graded lamination. The flat-lying aeolian interdune deposits are characterised by granule and sand ripples, horizontal lamination in coarse sand and granules, plane bed lamination and inverse graded lamination. Associated structures include ripple-form lamination and deflation lags. Three types of trace fossil associated with completely bioturbated horizons occur in some low-angle dune and interdune deposits.
The aeolian facies interfinger with alluvial fan deposits giving rise to three recognizable facies belts. Marginal aeolian deposits are associated with fluvial conglomerates and are dominated by interdune deposits and occasionally very thin barchan deposits (set height 3-37 cm). Intermediate aeolian deposits are characterized by interbedded crescentic dune, small draa (dune set height 5 cm-4.5 m) and interdune deposits, and rare fluvial and lake sediments. Basinal aeolian deposits are dominated by draa deposits (dune set height 0.2-28 m) associated with rare interdune sediments. Transverse dunes and draas were moved by north-eastern palaeowinds towards the foot of the alluvial fans. The aeolian sediments were deposited in a fault-bounded desert basin.  相似文献   

4.
Aeolian dune dimensions and migration rates are analysed along the Ceará coast, north-east Brazil. Dunes that are currently mobile along the Ceará coast are composed of barchans and sand sheets. The results show that barchans maintain an equilibrium form, which can be characterized by values of dimensionless shape parameters H/W and W/L , where H is the dune height, W is the wing-to-wing width and L is the dune length. Dunes are highly mobile, with average migration rates of 17·5 m year−1 for barchans and 10 m year−1 for sand sheets. The calculated migration rates were found to depend strongly on dune dimensions for both barchans and sand sheets, i.e. the larger the dune is, the lower the migration rate will be. This size dependence was associated with the existence of a representative common transport rate along the dune fields, which induces a different dune migration rate dependent on dune size. Finally, from the observed dune evolution, an aggregated scale aeolian sediment transport was inferred. This bulk transport rate, of the order of 90–100 m3 m−1 year−1, is only valid for a timescale of years to decades, which is the timescale used in dune evolution analysis.  相似文献   

5.
Data from a moderate energy, meso-tidal beach on the east side of Delaware Bay, New Jersey, USA, revealed the significance of both beach width as a source for aeolian transport and the effect of tidal rise on source width. Wind speeds averaged over 17·1 min, recorded 6 m above the crest of a 0·5 m high dune, ranged from 11·6 to 12·7 m s?1 during the experiment. The highest observed rate of transport on the beach was 0·0085 kg m?1 s?1, monitored at rising low tide when the average wind speed was 11·6 m s?1 across 0·35 mm diameter surface sediments. The wind direction was oblique to the shoreline, creating a source width of 34 m. The reduction in the width of the beach as a source for aeolian transport during rising tide was approximately arithmetic, whereas the reduction in volume of sediment trapped was exponential. Aeolian transport effectively ceased when source width was less than 8 m. Wind conditions, moisture content of the surface sediments and presence of binding salts did not appear to vary dramatically, and no coarse grained lag deposit formed on the surface of the beach. The decrease in rate of sediment trapped through time in the tidal cycle is attributed to differences in source width. Sediment deposited in the litter behind the active beach by strong winds during the rising tide was eroded during the high water period by the high waves and storm surge generated by these winds, and net losses of sediment were observed despite initial aeolian accretion.  相似文献   

6.
Samples were collected from the surfaces of four types of typical dunes in order to identify variations in textural characteristics over their bodies. These dunes are barchan, climbing dune, falling dune, and nabkha. Statistical parameters vary from position to another and show that each dune has its own characteristics. It is well recognized that all the sediments of the studied dunes tend to be finer from borders toward the mid dune. Histograms and bivariate diagrams successfully differentiate between different localities within all studied dunes. The climbing dune shows high uniformity where medium sand represents the mean grain size of 91% of collected samples. Samples from barchan and falling dune show lowest variability in statistical parameter values compared to other dunes. On the other hand, nabkha sediments are more variable and show higher values of average statistical parameters. All studied dunes are coarser than surrounding dunes in regional areas and other comparable dunes. But particularly, the barchan sediments in Kuwait are characterized by larger grain size, better sorting than other comparable dunes in the upwind (Iraq) and downwind (Saudi Arabia) and other parts of the world.  相似文献   

7.
A nabkha is a vegetated sand mound, which is typical of the aeolian landforms found in the Hotan River basin in Xinjiang, China. This paper compares the results of a series of wind tunnel experiments with an on-site field survey of nabkhas in the Hotan River basin of Xinjiang. Wind tunnel experiments were conducted on semi-spherical and conical sand mounds without vegetation or shadow dunes. Field mounds were 40 times as large as the size of the wind tunnel models. In the wind tunnel experiments, five different velocities from 6 to 14 m/s were selected and used to model the wind flow pattern over individual sand mound using clean air without additional sand. Changes in the flow pattern at different wind speeds resulted in changes to the characteristic structure of the nabkha surface. The results of the experiments for the semi-spherical sand mound at all wind velocities show the formation of a vortex at the bottom of the upwind side of the mound that resulted in scouring and deposition of a crescentic dune upwind of the main mound. The top part of the sand mound is strongly eroded. In the field, these dunes exhibited the same scouring and crescentic dune formation and the eroded upper surface was often topped by a layer of peat within the mound suggesting destroyed vegetation due to river channel migration or by possible anthropogenic forces such as fuel gathering, etc. Experiments for the conical mounds exhibit only a small increase in velocity on the upwind side of the mound and no formation of a vortex at the bottom of the upwind side. Instead, a vortex formed on the leeward side of the mound and overall, no change occurred in the shape of the conical mound. In the field, conical mounds have no crescentic dunes on the upwind side and no erosion at the top exposed below peat beds. Therefore, the field and laboratory experiments show that semi-spherical and conical sand mounds respond differently to similar wind conditions with different surface configuration and development of crescent-shaped upwind deposits when using air devoid of additional sediment. __________ Translated from Journal of Desert Research, 2007, 27(1): 9–14 [译自:中国沙漠]  相似文献   

8.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

9.
《Quaternary Science Reviews》2003,22(10-13):1027-1033
The Liwa region of the United Arab Emirates contains some of the largest and most areally extensive megabarchanoid sand dunes on a global scale. Here we present optical dating results on samples of aeolian sediment from deep drill cores extracted from the largest dune field of the Liwa area. Optical dating of these core sediments using the single aliquot regeneration protocol indicates Mid–Late Holocene phases of rapid dune deposition, the most recent period of reactivation began at ca 2.8 ka. This event was preceded by a period of deposition at ca 5 ka. These results suggest that the dune systems of the southeastern Arabian Peninsula are closely linked to changes in Late Quaternary global climate, particularly linked to the intensity and spatial extent of palaeomonsoon rainfall. Since the last precessional maxima at ca 9 ka, at which time a peak in monsoonal rainfall has been recognised, a significant environmental transition to widespread desert conditions occurred in an apparently abrupt fashion. During the initial period of aridification, large quantities of sand were transported and deposited in the form of large and very large (up to 160 m high) scale aeolian bedforms. Following the initial phase of aeolian accumulation, the system appears to have remained in stasis.  相似文献   

10.
An aeolian dune field migrating to the east encroached on the toes of alluvial fans in the Teruel Basin (eastern Spain) during a short interval in the Late Pliocene (ca 2·9 to 2·6 Ma), when Northern Hemisphere glaciation and strong glacial–interglacial cycles began. Preservation of the dune field was controlled by syn‐sedimentary activity of a normal fault. Ephemeral water discharge eroded aeolian sands and formed V‐shaped channels in which aeolian sandstone blocks accumulated. The incorporation of loose aeolian sand in wadi waters modified the sediment/water ratio, changing the physical properties of the flows as they penetrated the aeolian dune field. The erosion and cover of aeolian dune foresets by sheetflood deposits suggest that dune‐damming caused the intermittent ponding of water behind the dunes and its flashy release. The arid climate in the Late Pliocene western Mediterranean realm favoured the transport of windblown sediments from northern Africa and western Mediterranean land masses into the Mediterranean. The formation of the studied aeolian dune field (2·9 to 2·6 Ma) and possibly others (for example, the Atacama, Namib and Sahara deserts) correlates with a strong increase of the influence of obliquity, which can be attributed to the combination of a regional expression related to the reduced effect of precession due to a minimum in the long‐period (2·3 Ma) eccentricity cycle and a remote expression of the onset of the Northern Hemisphere glaciation.  相似文献   

11.
The Algodones dune field of southeastern California is one of the largest active dune fields in North America. The dune field is migrating in an easterly direction, oblique to the resultant sand flow direction (S 24° E). The migration of the Algodones results from an interaction between regional winds and the dune field. This interaction generates a localized secondary flow that has caused the dune field to migrate in a direction oblique to the resultant sand flow direction. Four lines of evidence suggest that the Algodones has migrated in an easterly direction: (1) A ramp, interpreted as the trailing edge of the dune field, 35 m thick and 500 m wide composed of aeolian deposits that borders the western edge of the dune field. No similar deposits are found on the eastern (leading edge) margin of the dune field. (2) Leading-edge sand-sheet deposits are exposed in interdune areas within the dune field. These deposits are west of the modern leading-edge sand sheet. (3) Across the breadth of the dune field sands are consistently coarser and more poorly sorted in the west and finer and better sorted in the east. This observation suggests that sand is transported from west to east. (4) Eastward migration of a large compound-complex crescentic dune. If the dune field continues to migrate it will deposit a vertical sequence consisting of: a basal sand-sheet deposit consisting of wind and water-ripple laminae, small-scale aeolian cross-strata, and ephemeral stream (wadi) deposits; aeolian dune deposits consisting of medium-scale aeolian compound cross-strata; small-scale simple sets of aeolian cross-strata with highly variable dip directions; a sand sheet containing low-angle wind-ripple cross-strata capped by a coarse sand lag super bounding surface.  相似文献   

12.
The Guarani aquifer system (GAS) represents one of the biggest aquifers in the world and is the most relevant groundwater resource in South America. For the first time, by combining field and laboratory measurements, a high-resolution aquifer analog model of fluvial–aeolian sediments of the GAS in São Paulo State (Brazil) is constructed. Three parallel sections of frontal outcrops, 28 m × 5.8 m, and two parallel sections of lateral outcrops, 7 m × 5.8 m, are recorded during open-pit mining of sandy sediments and describe in detail the three-dimensional distribution of the local lithofacies and hydrofacies. Variations of hydraulic conductivity, K, and porosity, n, are resolved on the centimeter scale, and the most permeable units of the fluvial–aeolian facies association are identified. The constructed aquifer analog model shows moderate hydraulic heterogeneity and a mean K value of 1.36 × 10?4 m/s, which is greater than the reported range of K values for the entire GAS in São Paulo State. The results suggest that the examined sedimentary unit constitutes a relevant portion of the GAS in São Paulo State in the context of groundwater extraction and pollution. Moreover, the constructed aquifer analog is considered an ideal basis for future numerical model experiments, aiming at in-depth understanding of the groundwater flow and contaminant transport patterns at this GAS portion or at comparable fluvial–aeolian facies associations.  相似文献   

13.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

14.
A field experiment was conducted from 2 May 2010 to 1 May 2012 in the Gurbantunggut Desert, the second largest desert in China, to investigate saltation activity and its threshold velocity, and their relations with atmospheric and soil conditions. The results showed that saltation activity occurred more frequently during 08:00–20:00 Local Standard Time in spring and summer, with air temperatures between 20.0 and 29.0 °C, water vapor pressures between 0.6 and 0.9 kPa, soil temperatures between 25.0 and 30.0 °C, and a soil moisture lower than 0.04 m3/m3. At 2 m height, the saltation threshold velocity varied between 11.1 and 13.9 m/s, with a mean of 12.5 m/s. Threshold velocity showed clear seasonal variations in the following sequence: spring (11.7 m/s) < autumn (12.7 m/s) < summer (13.6 m/s). Affected by soil conditions, aeolian sand transport was weak, with an average annual aeolian sand that transported across a section (1.0 m × 2.0 m) of less than 6.0 kg.  相似文献   

15.
Comparative polynomial trend analyses of textural parameters were conducted on adjacent foreshore, berm, and dune sediment populations along a coastal barrier chain of the Middle Atlantic Bight. The analyses indicate that systematic textural patterns exhibited by the barrier sediments consist of both regional trends and local cyclicity.The regional trends appear to reflect progressive variability of both the hydraulic and aeolian regimes. Variability of the hydraulic regime consists of a progressive southward increase in average wave energy, with a concomitant decrease in energy consistency; this is attributed to the coastal wave refraction pattern, and to a progressive southward decrease in shelf width. The aeolian regime is characterized by a constant average energy level along the barrier chain, but exhibits a progressive northward decrease in wind energy consistency, and a corresponding increase in winnowing efficiency. Local cyclicity along the barrier appears to reflect textural variations in the barrier source materials excavated from a heterogeneous Pleistocene substrate. The cyclic patterns suggest the presence of a buried ancestral Albemarle fluvial channel near the present mouth of Albemarle Sound.In developing systematic textural variations along the barrier, size characteristics of the source material appear to be the most influential factor, while the influences of both the hydraulic and aeolian regimes are subordinate. The berm and dune field environments are most amenable to the development of systematic variation, while the foreshore is most susceptible to random component variation.  相似文献   

16.
Wind is the primary control on the formation of aeolian geomorphology. In this study, we combined wind regime data from automated weather stations in the western and southwestern Tengger Desert of the Inner Mongolia region in China with remote‐sensing data to analyse the relationship between the wind energy environment and aeolian geomorphology. Tengger Desert is one of the main dust storm sources in northwestern China. Therefore, efforts aimed at controlling desertification and dust storm require a deeper understanding of the processes that govern the formation and subsequent evolution of dunes in this area. Wind speed was largest in the northwest (3.3 m/s in the Xiqu station) and smallest in the southeast (1.2 m/s in the Haizitan station). Potential sand transport was also largest in the northwest (195 in the Jiahe station) and smallest in the southeast (33 in the Tumen station). The sand‐driving wind (5.92 m/s) directions were from the NW and SE quadrant across the study area, at >76% of all sand‐driving wind, reaching 99% in the Tumen station. The sand‐driving wind in the NW quadrant reached >48%, and in the SE quadrant, >12% of all sand‐driving wind in all stations. In the study area, sand dunes included crescent, dune networks, transverse, and coppice dunes. Dune crest directions had similar trends from upwind to downwind, at 133° in the middle region, and 124° in the southwestern region. Mean dune spacing changed with dune patterns; the maximum spacing for crescent dunes was 147 m, for dune networks 118 m, and for transverse dunes it was 77 m. The mean crest length was 124 m (maximum) for crescent dunes in the northwest, 121 m for transverse dunes, and 84 m for dune networks. However, because of gullies in the southern region, the mean crest length was only 58 m (least) for the crescent dunes in that area. The defect density ranged from 0.007 to 0.014. The spatial differences in dune patterns reflected the evolution of the dune field, where older dunes had been formed upwind and younger downwind. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
库姆塔格沙漠的“羽毛状沙丘”形态的观测   总被引:3,自引:0,他引:3  
参照卫星照片和地形图,实地观测了库姆塔格沙漠“羽毛状沙丘”分布区域的地貌。新月型“沙垄”是该区域的主导性地貌类型,垄间地形波状起伏。如果将“沙垄”喻为“羽轴”,垄间的波状起伏地形为“羽枝”,则可构成卫星照片所显示的“羽毛状沙丘”。新月型“沙垄”的走向为NE-SW,由新月形沙丘前一沙丘的迎风坡与后一沙丘的东翼相连而成,高3~19m,宽约50m,长15~22km。“垄”间起伏地形的波长为100~300m,振幅为40~100cm,与“沙垄”成60~105°夹角。在波状起伏地形的波峰与波谷过渡区堆积颜色较浅的细沙,厚2~7cm,构成了“大沙波”。实地观测的“羽毛状沙丘”的形态与卫星照片显示的形态有一定差异。  相似文献   

18.
Tracing sources of aeolian sediment is key to reconstructing earth surface processes in arid areas and interpreting the paleoenvironmental significance of aeolian sequences. However, the difference of geochemical characteristics between different fractions of sediments in the Yarlung Zangbo River Basin (YZRB) is still unclear, so we want to identify which fraction of sediments is more suitable for tracing sediment sources. Considering the long distance between different wide valleys in the YZRB, we wonder whether there is any difference between these wide valleys in terms of geochemical characteristics of sediments. Forty-three surface sediment samples in the YZRB are collected, and the grain-size distributions and the major-element composition for 37 samples and the trace and rare earth element composition for the coarse (75–500 μm) and fine (<?75 μm) fractions of all samples are determined. The results reveal the following: (1) the fine fractions of the deposits contain more environmental information, suggesting that the fine fractions cannot be directly compared between different climate zones for provenance identification and that appropriate coarse fractions, based on the grain-size distribution of the targeted sediments, are more ideal for tracing sediment sources; and (2) geochemical characteristics of various sediment types show spatial heterogeneity. The coarse and fine fractions of the loose sediment samples can be divided into two regional groups based on geochemical characteristics: the Maquanhe zone in the upper reach, the Xigaze, Shannan and Mainling zone in the middle reach, which is consistent with the geological background of the YZRB; (3) aeolian deposits in the YZRB are a local origin and predominantly derived from the adjacent loose sediments, and fluvial sediments in the upper reach contribute little to the aeolian sands in the middle reach.  相似文献   

19.
The combination of wind measurements and remotely sensed geomorphometry indices provides a valuable resource in the study of desert landforms, because arduous desert environments are difficult to access. In this research, we couple wind data and geomorphometry to separate and classify different sand dunes in Kashan Erg in central Iran. Additionally, the effect of sand-fixing projects on sand dune morphology was assessed using geomorphometry indices (roughness, curvature, surface area, dune spacing and dune height). Results showed that a Digital Elevation Model of the National Cartographic Center of Iran (NCC DEM) with 10-m resolution and accuracy of 54% could discriminate geomorphometry parameters better than the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 30-m resolution and Shuttle Radar Topography Mission (SRTM) data with 90-m resolution and 45.2 and 1.6% accuracy, respectively. Low classification of SRTM DEM was associated with too many non-value points found in the DEM. Accuracy assessment of comparison ground control points revealed that ASTER DEM (RMSE = 4.25) has higher accuracy than SRTM and NCC DEMs in this region. Study of curvature showed that transverse and linear sand dunes were formed in concave topography rather than convex. Reduced slopes in fixed sand dunes were established due to wind erosion control projects. Measurements of dune height and spacing show that there is significant correlation in compound dunes (R 2 = 0.546), linear dunes (R 2 = 0.228) and fixed dunes (R 2 = 0.129). In general, the height of dunes in Kashan Erg increases from the margin of the field to the center of the field with a maximum height of 120 m in star dunes. Analysis of wind data showed that sand drift potential is in low-medium class in Kashan Erg. Linear sand dunes in Kashan Erg show that they are following a global trend in forming of these. Finally, established of geomorphometry method in dune classification will help researchers to identify priority of land management and performance assessment of sand dunes fixing projects in arid arduous environment.  相似文献   

20.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号