首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present field relationships, petrography, and mineral major and trace element data for the Neoproterozoic Dariv Igneous Complex of the Altaids of Western Mongolia. This unique complex of high-K plutonic rocks is composed of well-exposed, km-scale igneous intrusions of wehrlites, phlogopite wehrlites, apatite-bearing phlogopite clinopyroxenites, monzogabbros, monzodiorites, and clinopyroxene-bearing monzonites, all of which are intruded by late stage lamprophyric and aplitic dikes. The biotite-dominated igneous complex intrudes depleted harzburgitic serpentinite. The observed lithological variability and petrographic observations suggest that the plutonic rocks can be ascribed to a fractionation sequence defined by olivine + clinopyroxene ± Fe–Ti oxides → phlogopite + apatite → K-feldspar + plagioclase → amphibole + quartz. Notably, phlogopite is the dominant hydrous mafic mineral. Petrogenesis of the observed lithologies through a common fractionation sequence is supported by a gradual decrease in the Mg# [molar Mg/(Fetotal + Mg) × 100] of mafic minerals. Crystallization conditions are derived from experimental phase petrology and mineral chemistry. The most primitive ultramafic cumulates crystallized at ≤0.5 GPa and 1,210–1,100 °C and oxygen fugacity (fO2) of +2–3 ?FMQ (log units above the fayalite–quartz–magnetite buffer). Trace element modeling using clinopyroxene and apatite rare earth element compositions indicates that the dominant mechanism of differentiation was fractional crystallization. The trace element composition of a parental melt was calculated from primitive clinopyroxene compositions and compares favorably with the compositions of syn-magmatic lamprophyres that crosscut the fractionation sequence. The parental melt composition is highly enriched in Th, U, large ion lithophile elements, and light rare earth elements and has a pronounced negative Nb–Ta depletion, suggestive of an alkaline primitive melt originating from a subduction-imprinted mantle. Comparison with a global compilation of primitive arc melts demonstrates that Dariv primitive melts are similar in composition to high-K primitive melts found in some continental arcs. Thus, the high-K fractionation sequence exposed in the Dariv Igneous Complex may be a previously unrecognized important fractionation sequence resulting in alkali-rich upper crustal granitoids in continental arc settings.  相似文献   

2.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

3.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   

4.
The trace element compositions of melts and minerals from high-pressure experiments on hydrous pyroxenites containing K-richterite are presented. The experiments used mixtures of a third each of the natural minerals clinopyroxene, phlogopite and K-richterite, some with the addition of 5% of an accessory phase ilmenite, rutile or apatite. Although the major element compositions of melts resemble natural lamproites, the trace element contents of most trace elements from the three-mineral mixture are much lower than in lamproites. Apatite is required in the source to provide high abundances of the rare earth elements, and either rutile and/or ilmenite is required to provide the high field strength elements Ti, Nb, Ta, Zr and Hf. Phlogopite controls the high levels of Rb, Cs and Ba.Since abundances of trace elements in the various starting mixtures vary strongly because of the use of natural minerals, we calculated mineral/melt partition coefficients (DMin/melt) using mineral modes and melting reactions and present trace element patterns for different degrees of partial melting of hydrous pyroxenites. Rb, Cs and Ba are compatible in phlogopite and the partition coefficient ratio phlogopite/K-richterite is high for Ba (1 3 6) and Rb (12). All melts have low contents of most of the first row transition elements, particularly Ni and Cu ((0.1–0.01) × primitive mantle). Nickel has high DMin/melt for all the major minerals (12 for K-richterite, 9.2 for phlogopite and 5.6 for Cpx) and so behaves at least as compatibly as in melting of peridotites. Fluorine/chlorine ratios in melts are high and DMin/melt for fluorine decreases in the order apatite (2.2) > phlogopite (1.5) > K-richterite (0.87). The requirement for apatite and at least one Ti-oxide in the source of natural lamproites holds for mica pyroxenites that lack K-richterite. The results are used to model isotopic ageing in hydrous pyroxenite source rocks: phlogopite controls Sr isotopes, so that lamproites with relatively low 87Sr/86Sr must come from phlogopite-poor source rocks, probably dominated by Cpx and K-richterite. At high pressures (>4 GPa), peritectic Cpx holds back Na, explaining the high K2O/Na2O of lamproites.  相似文献   

5.
The bimodal association of the Noen and Tost ranges is ascribed to the Gobi-Tien Shan rift zone and was formed 318 Ma ago at the continental margin of the North Asian paleocontinent. It is made up of volcanic series of alternating basalts and peralkaline rhyolites with subordinate trachytes, dike belts, and massifs of peralkaline granites. The association also includes a coeval massif of biotite granites. Based on Al2O3 and FeOtot contents, the peralkaline rhyolites are subdivided into comendites (FeOtot 1.5–5.7 wt %, Al2O3 10.5–15.4 wt %) and pantellerites (FeOtot 5.2–7.5 wt %, Al2O3 9.1–10.2 wt %). The peralkaline salic rocks of the bimodal association were formed by the crystallization differentiation of rift basaltic magmas combined with crustal assimilation. The comendites, pantellerites, and peralkaline granites inherited negative Nb and Ta and positive K and Pb anomalies from basalts. They are also similar to basalts in Nd isotope composition (?Nd(T) = 5.5–7.4) and have nearly mantle oxygen isotope composition (δ18O = 5.9–7.3‰). The most differentiated and least contaminated rocks of the bimodal series of the Noen and Tost ranges are pantellerites. Calculations indicate that the fraction of the residual pantellerite melt was 8% or less of the parental basaltic magma. The comendites were derived from peralkaline salic melts by the assimilation of anatectic crustal melts compositionally similar to biotite granites. The formation of the latter within the Noen and Tost ranges is explained by the specific geodynamic position of the Gobi-Tien Shan rift zone, which was formed near a paleocontinental margin that evolved in an active margin regime shortly before the beginning of rifting.  相似文献   

6.
The upper Cretaceous Abu Khruq ring complex (ARC) is located in the South Eastern Desert between latitudes 24°00′10′′ and 24°03′15′′ N, and longitudes 33°54′50′′ and 33°58′ E and has a roughly circular shape with a diameter of 7 km. ARC is built up by major extrusion of alkaline volcanic rocks comprising mainly rhyolite porphyry and alkaline trachyte rocks at the center of the ring complex followed by successive intrusions of alkaline gabbro and syenitic rocks comprising quartz syenite (oversaturated), syenite (saturated), and nepheline syenite (undersaturated). Petrographical and geochemical studies were carried out for the rocks of the forming ARC. For mineralogical and radioactive investigations, samples were collected from the most promising locations representing the hematitized nepheline syenite, nepheline syenite pegmatites, and quartz syenite. The most important minerals comprise: phosphuranylite, zircon, monazite, xenotime, plumbopyrochlore, pyrite, huttonite, apatite, REE mineral, rutile, and atacamite. The hematitized nepheline syenite is the most U- and Th-rich rocks, where eU content in this rock ranges from 375 to 788 ppm with an average 502 ppm and the average eTh content is 2,345 ppm ranging from 1,918 to 3,067 ppm. The pegmatite syenite and quartz syenite contain relatively low concentrations of U and Th, where the average eU content are 11 and 16 ppm and average eTh contents are 27 and 327 ppm, respectively.  相似文献   

7.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

8.
ABSTRACT

Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.% SiO2), with low MgO (4.7–10.2 wt. %) and high Al2O3 (3.5–8.6 wt.%). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.  相似文献   

9.
Apatite is a cumulate phase in the upper parts of some mafic layered intrusions and anorthositic complexes. We investigated the effect of pressure and fluorine on apatite saturation in mafic magmas to better understand under which conditions this mineral crystallizes. Apatite saturation gives information about the formation of silicate rocks, and is of interest in explaining the formation of apatite–oxide-rich rocks (e.g. nelsonites comprising approximately, one-third apatite and two-third Fe–Ti oxide). Two models of formation are proposed for this rock type: crystal fractionation followed by accumulation of apatite and Fe–Ti oxides and liquid immiscibility. New experiments carried out with mafic compositions at 500 MPa confirm that the most important variables on phosphate saturation are SiO2 and CaO. Fluorine addition leads to apatite saturation at lower SiO2 and higher CaO concentrations. Comparison of our results with those of previous experimental studies on liquid–liquid immiscibility at upper-to-mid-crustal conditions allows us to investigate the relative importance of apatite saturation versus liquid–liquid immiscibility in the petrogenesis of nelsonites and similar rocks. The liquid line of descent of three natural examples studied (the Sept-Îles intrusive suite, the anorthositic Complex of the Lac-St-Jean and the Skaergaard layered intrusion) do not cross the liquid–liquid immiscibility field before they reach apatite saturation. Thus, the apatite–oxide-rich rock associated with these three intrusive suites are best explained by crystal fractionation followed by accumulation of apatite and Fe–Ti oxides.  相似文献   

10.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

11.
Mineral chemistry, major and trace elements, 40Ar/39Ar age and Sr–Nd–Pb isotopic data are presented for the Late Cretaceous Hamsilos volcanic rocks in the Central Pontides, Turkey. The Hamsilos volcanic rocks mainly consist of basalt, andesite and associated pyroclastics (volcanic breccia, vitric tuff and crystal tuff). They display shoshonitic and high-K calc-alkaline affinities. The shoshonitic rocks contain plagioclase, clinopyroxene, alkali feldspar, phlogopite, analcime, sanidine, olivine, apatite and titanomagnetite, whereas the high-K calc-alkaline rocks contain plagioclase, clinopyroxene, orthopyroxene, magnetite / titanomagnetite in microgranular porphyritic, hyalo-microlitic porphyritic and glomeroporphyritic matrix. Mineral chemistry data reveal that the pressure condition of the clinopyroxene crystallisation for the shoshonitic rocks are between 1.4 and 6.3 kbar corresponds to 6–18-km depth and the high-K calc-alkaline rocks are between 5 and 12 km. 40Ar/39Ar age data changing between 72 ± .5 Ma and 79.0 ± .3 Ma (Campanian) were determined for the Late Cretaceous Hamsilos volcanic rocks, contemporaneous with the subduction of the Neo-Tethyan Ocean beneath the Pontides. The studied volcanic rocks were enriched in the large-ion lithophile and light rare earth element contents, with pronounced depletion in the contents of high-field-strength elements. Chondrite-normalised rare earth element patterns (LaN/LuN = 6–17) show low to medium enrichment, indicating similar sources of the rock suite. Initial 87Sr/86Sr values vary between .70615 and .70796, whereas initial 143Nd/144Nd values change between .51228 and .51249. Initial 206Pb/204Pb values vary between 18.001 and 18.349, 207Pb/204Pb values between 15.611 and 15.629 and 208Pb/204Pb values between 37.839 and 38.427. The main solidification processes involved in the evolution of the volcanic rocks consist of fractional crystallisation, with minor amounts of crustal contamination ± magma mixing. According to geochemical evidence, the shoshonitic melts in the Hamsilos volcanic rocks were possibly derived from the low degree of partial melting of a subcontinental lithospheric mantle (SCLM), while the high-K calc-alkaline melts were derived from relatively high degree of partial melting of SCLM that was enriched by fluids and/or sediments from a subduction of oceanic crust.  相似文献   

12.
Early Paleozoic alkaline basic magmatism in the Kuznetsk Alatau is manifested in the Upper Petropavlovka pluton of gabbro, feldspathoid rocks (theralites, mafic foidolites, and nepheline syenites), and Ca-carbonatites. According to Sm–Nd and Rb–Sr isotope data, the pluton formed in the Middle Cambrian (509 ± 10 Ma). The silicate igneous rocks correspond in the contents of silica, alumina, and alkalies to derivates of a K–Na alkaline basic association. The Ca-carbonatites are characterized by a high-temperature (600–900 °C) paragenesis of apatite, clinopyroxene, ferromonticellite, phlogopite, and magnetite. They are enriched in P2O5 (up to 6.4 wt.%), Sr (up to 3000–4500 ppm; Sr/Ba ~ 5–7), and REE + Y (up to 800 ppm) and show evidence for liquation genesis. The predominant magmatic source (εNd(T) = 5–7) was moderately depleted PREMA, possibly combined with E-MORB and EM. According to the isotopic data ((87Sr/86Sr)T ~ 0.7024–0.7065; δ18O ~ 6.3–15.5‰; δ18C ~ –3.5 to –2.0‰), the fractionation of the melts was accompanied by their crustal contamination. The trace-element composition of the mafic rocks testifies to the participation of a substance similar to the substrata of the parental magmas of MORB, IAB, and OIB in the magma generation. This suggests intrusion in the geodynamic setting of interaction between the active continental margin and an ascending mantle diapir. Most likely, the intrusion led to the mixing of material from different sources, including the components of PREMA, enriched suprasubduction lithospheric mantle (EM), and continental crust. The assumption is made that the complexes of highly alkaline rocks and carbonatites in the western Central Asian Fold Belt are of plume origin and belong to an Early Paleozoic large igneous province.  相似文献   

13.
The ~1.74 Ga Damiao anorthosite complex, North China, is composed of anorthosite and leuconorite with subordinate melanorite, mangerite, oxide-apatite gabbronorite, perthite noritic (i.e., jotunitic) and ferrodioritic dykes. The complex hosts abundant vein-, pod- and lens-like Fe–Ti–P ores containing variable amounts of apatite (10–60 modal%) and Fe–Ti oxides. In addition to Fe–Ti–P ores, there are also abundant Fe–Ti ores which are closely associated with Fe–Ti–P ores in the deposit. Most of Fe–Ti–P ores are dominated by Fe–Ti oxides and apatite, devoid of silicate minerals, mineralogically similar to the common nelsonites elsewhere. In contrast, Fe–Ti ores are dominated by Fe–Ti oxides with minor apatite (<5 modal %). The parental magma of these ores, estimated from olivine and apatite compositions using mineral-melt partition coefficients, has composition similar to the ferrodioritic dykes. Fe–Ti–P ores have variable Fe–Ti oxides and apatite proportions, indicating that they are cumulates. Their simple assemblage of Fe–Ti oxides and apatite and local net-texture suggest that the Fe–Ti–P ores in Damiao have formed from nelsonitic melts immiscibly separated from the ferrodioritic magma during late-stage differentiation. Fe–Ti ores are also cumulates and have mineral compositions similar to Fe–Ti–P ores. The close association between Fe–Ti and Fe–Ti–P ores indicates that the Fe–Ti ores may have also formed from the nelsonitic melts. We proposed that differentiation of nelsonitic melts accompanied by gravity settling is responsible for the formation of Fe–Ti and Fe–Ti–P ores. Such a differentiation process in nelsonitic melts is well supported by variations of Sr, Y, Th, U, REE and Eu/Eu* of apatite in Fe–Ti–P ores. Using oxides/apatite ratio of 2:1 and compositions of apatite and calculated primary oxides, we estimate the composition of the nelsonitic melt as ~52.0 wt% Fe2O3t, ~18.5 wt% CaO, ~14.2 wt% P2O5, ~8.7 wt% TiO2, ~4.0 wt% Al2O3 and ~1.1 wt% MgO with minor SiO2, K2O, Na2O and F. Such a nelsonitic melt is suggested to be possibly conjugated with Si-rich melts compositionally similar to the Damiao jotunitic dykes (~50 wt% SiO2 and ~15 wt% Fe2O3t) which may subsequently evolve to mangeritic rocks in Damiao. Our modeling also indicates that the onset of immiscibility occurs at a time when the evolved melt has ~44 wt% SiO2, ~21 wt% Fe2O3t, ~3.0 wt% TiO2 and ~2.6 wt% P2O5. High oxygen fugacity and phosphorous content in magmas may play important roles in the immiscibility of nelsonitic magmas, including promoting iron enrichments and widening the two-liquid field.  相似文献   

14.
Inclusions of mineral-forming environments in apatite-containing ijolites and magnetite–phlogopite–apatite ores in carbonatites were studied to elucidate the genesis of apatite mineralization in the Guli alkaline ultramafic carbonatite massif. Primary inclusions of carbonate–salt and carbonate melts have been discovered and studied. The carbonate–salt melt inclusions are of alkaline high-Ca composition and are enriched in P, Sr, SO3, and F (wt.%): CaO—30–40, Na2O—5–12, K2O—2–4, P2O5—1–3, SO3—1.5–3, and SrO—1–3. They also contain minor MgO, FeO, BaO, and SiO2 (tenths and hundredths of percent). The homogenization temperature of these inclusions is 850–970 °C. The carbonate inclusions contain predominant CaO (54–67 wt.%) and minor MgO, FeO, SrO, Na2O, and P2O5 (tenths of percent). Their homogenization temperature is 840–860 °C. Similar primary carbonate–salt and carbonate inclusions were found in garnet, and secondary ones were detected in silicate minerals (clinopyroxene and nepheline) of ijolites. Clinopyroxenes of ijolites also contain primary inclusions of alkaline ultramafic high-Ca melts similar in composition to melilitite-melanephelinites highly enriched in P, SO3, and CO2 (wt.%): SiO2—41–46, Al2O3—8–16, FeO—2–8, MgO—3–6, CaO—12–20, Na2O—2–9, K2O—1–6, P2O5—0.4–2.1, SO3—0.2–2.3, and Cl—0.02–0.35. According to the obtained data, apatite of the magnetite–phlogopite–apatite ores and ijolites of the Guli pluton crystallized from phosphorus-rich alkaline carbonate–salt melts at 850–970 °C. The generation of these melts was, most likely, due to the silicate–salt immiscibility in melilitite-melanephelinite melts highly enriched in salts, which occurred either at the final stages of clinopyroxene crystallization or during the formation of melilite. The presence of alkalies, S, F, and CO2 in spatially separated carbonate–salt melts contributed to the concentration and preservation of phosphorus in them at low temperatures, which led to the formation of apatite mineralization in ijolites and ore deposit in carbonatites.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

15.
This paper presents major element, trace element, and new zircon Hf isotopic data for the Early Mesozoic intrusive rocks in the south Hunchun, Yanbian area, Northeast China. These data are used to constrain the petrogenesis of these intrusive rocks and their implications for the Phanerozoic continental growth of the Central Asian Orogenic Belt (CAOB). Combining geology, geochronology, and whole-rock geochemistry, we identify three distinct episodes of magmatism as Early–Middle Triassic (249–237 Ma), Late Triassic (224–206 Ma), and Early Jurassic (200–187 Ma). The Early–Middle Triassic (249–237 Ma) adakitic tonalite and granodiorite were produced by the partial melting of subducted oceanic slabs, and the melts were contaminated by mantle peridotite during their ascent, whereas the coeval non-adakitic diorite and monzogranite were most likely derived from partial melting of crustal material. The remarkably high zircon Hf isotopic signature (εHf(t) = + 9.4 – +18.9), the enrichment in large-ion lithophile element and light rare earth elements, and the depletion in high field strength element suggest that these 224 Ma gabbros were derived from the partial melting of depleted mantle modified by subduction-related fluids. The 212 Ma monzogranite was most likely derived from juvenile material mixed with old crustal material as evidenced by their high SiO2, low MgO, and low Cr concentrations and variable εHf(t) values (–4.6 to +10.0). Except for the 197 Ma tonalites with affinity to the high silica adakites, the overall geochemical evolution of Early Jurassic (200–187 Ma) rocks was consistent with fractional crystallization from quartz diorite, granodiorite, and monzogranite to syenogranite. Both the Early Jurassic syn-subduction lateral continental growth by accretion of arc complexes and the Late Triassic post-collisional vertical continental growth by accretion of mantle-derived material played an important role in the Phanerozoic continental growth of the CAOB.  相似文献   

16.
Summary An experimental study on the phase relationships of three potassium-rich ultramafic rocks from the Damodar Valley, Gondawana basins, has been performed under upper mantle P–T conditions (1.0–2.5 GPa, 700–1200 °C). The Mohanpur lamproite and Satyanarayanpur minette, both from the Raniganj basins, have been investigated with the addition of 15 wt% H2O. No water was added in the experiments done on an olivine minette from the Jarangdih coal mine, Bokaro Basin, which originally contains 15 wt% CO2 and 2.86 wt% H2O. In all cases, olivine is the liquidus phase followed by phlogopite. The subsolidus assemblage for the three rocks is a phlogopite-bearing harzburgite, associated with apatite, Mg-ilmenite and carbonates for the Jarangdih rock; apatite, chromian spinel and carbonates and priderite (only between 1.0 and 1.2 GPa) in the case of the Mohanpur lamproite, and finally apatite, chromian spinel, rutile, and carbonate in the Satyanarayanpur sample. Although orthopyroxene is absent in the natural potassium-rich ultramafic rocks, its presence in the run products of the Jarangdih rock is possibly related to a reaction between olivine and a CO2-bearing fluid phase. The presence of orthopyroxene in the run products of Mohanpur and Satyanarayanpur rocks may be due to a reaction between K-feldspar, olivine and a vapour phase to produce phlogopite and orthopyroxene. On the basis of present experimental investigation and isotopic studies made by previous investigators, it has been suggested that these K-rich rocks have crystallized from melts derived by vein-plus-wall-rock melting of a phlogopite-bearing harzburgite source rock. Received December 15, 1999; revised version accepted June 17, 2001  相似文献   

17.
The variant rock types of an Alkaline-Carbonatite Complex (ACC) comprising alkali pyroxenite, nepheline syenite, phoscorite, carbonatite, syenitic fenite and glimmerite along with REE and Nb-mineralization are found at different centres along WNW-ESE trending South Purulia Shear Zone (SPSZ) in parts of Singhbhum Crustal Province. The ACC occurs as intrusions within the Mesoproterozoic Singhbhum Group of rocks. Alkali pyroxenite comprises of aegirine augite, magnesiotaramite, magnesiokatophorite as major constituents. Pyrochlore and eucolite are ubiquitous in nepheline syenite. Phoscorite contains fluorapatite, dahllite, collophane, magnetite, hematite, goethite, phlogopite, calcite, sphene, monazite, pyrochlore, chlorite and quartz. Coarse fluorapatite shows overgrowth of secondary apatite (dahllite). Secondary apatite is derived from primary fluorapatite by solution and reprecipitation. The primary fluorapatite released REE to crystallize monazite grains girdling around primary apatite. Carbonatite is composed dominantly of Srcalcite along with dolomite, tetraferriphlogopite, phlogopitic biotite, aegirine augite, richterite, fluorapatite, altered magnetite, sphene and monazite. The minerals comprising of the carbonatite indicate middle stage of carbonatite development. Fenite is mineralogically syenite. Glimmerite contains 50–60% tetraferriphlogopite. An alkali trend in the evolution of amphiboles (magnesiotaramite-magnesiokatophorite-richterite) and chinopyroxenes (aegirine augite, aegirine) during the crystallization of the suite of rocks is noted. Monazite is the source of REE in phoscorite and carbonatite. Fluorapatite has low contents of REE, PbO, ThO2 and UO2. Pyrochlore reflects Nb-mineralization in nepheline syenite and it is enriched in Na2O, CaO, TiO2, PbO and UO2. Pyrochlore containing UO2 (6.605%) and PbO (0.914%) in nepheline syenite has been chemically dated at 948 ± 24 Ma by EPMA.  相似文献   

18.
ABSTRACT

Large-scale Cu–Au mineralization is associated with Late Mesozoic intrusive rocks in the Tongling region of eastern China, which mainly comprise pyroxene monzodiorite, quartz monzodiorite, and granodiorite. To constrain the petrogenesis of the intrusive rocks and Cu–Au mineralization, detailed analyses of the geochronology, apatite in situ geochemistry, whole-rock geochemistry, and zircon Hf isotopic compositions were performed. Magmatic zircons from pyroxene monzodiorites, quartz monzodiorites, and granodiorites yield U–Pb ages of 136–149 Ma, 136–146 Ma, and 138–152 Ma, respectively, indicating that their formation ages are contemporaneous. Quartz monzodiorites and granodiorites (SiO2 = 57.9–69.5 wt.%) are highly potassic calc-alkaline rocks with adakitic affinity and have low MgO and Y contents, low zircon εHf(t) values (?11.7 to ?39.0), high apatite Cl contents (>0.2 wt.%), and log fO2 values (?23.2 to ?8.23), indicating that they may have formed when metasomatized mantle-derived magmas mixed with slab-derived magmas before undergoing crustal assimilation and fractional crystallization. Pyroxene monzodiorites (SiO2 = 48.4–53.0 wt.%) are shoshonitic and record high MgO, P2O5, and Y contents, high zircon εHf(t) values (1.55 to ?7.87), high oxygen fugacity, low Nb and Ta contents, and low apatite Cl contents (mainly <0.2 wt.%), suggesting that they were primarily derived from a metasomatized lithospheric mantle-derived magma that experienced the assimilation of lower crustal materials. The results indicate that the intrusive rocks and associated large-scale Cu–Au mineralization of the Tongling region resulted from the partial melting of the subducted oceanic slab in an oxidizing environment.  相似文献   

19.
Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) 25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23–25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19–23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole, mica, and sphene compositions suggest that the peralkaline magma evolved from metaluminous magma. Extensive feldspar fractionation occurred during evolution of the peralkaline magmas, but additional alkali and iron enrichment was likely a result of high halogen fluxes from crystallizing plutons and basaltic magmas at depth.  相似文献   

20.
Zircon megacrysts are locally abundant in 1–40 cm-thick orthopyroxenite veins within peridotite host rocks in the Archaean Lewisian gneiss complex from NW Scotland. The veins formed by metasomatic interaction between the ultramafic host and Si-rich melts are derived from partial melting of the adjacent granulite-facies orthogneisses. The interaction produced abundant orthopyroxene and, within the thicker veins, phlogopite, pargasite and feldspathic bearing assemblages. Two generations of zircon are present with up to 1 cm megacrystic zircon and a later smaller equant population located around the megacryst margins. Patterns of zoning, rare earth element abundance and oxygen isotopic compositions indicate that the megacrysts crystallized from crustal melts, whereas the equant zircon represents new neocryst growth and partial replacement of the megacryst zircon within the ultramafic host. Both zircon types have U–Pb ages of ca. 2464 Ma, broadly contemporaneous with granulite-facies events in the adjacent gneisses. Zircon megacrysts locally form?>?10% of the assemblage and may be associated to zones of localized nucleation or physically concentrated during movement of the siliceous melts. Their unusual size is linked to the suppression of zircon nucleation and increased Zr solubility in the Si-undersaturated melts. The metasomatism between crustal melts and peridotite may represent an analog for processes in the mantle wedge above subducting slabs. As such, the crystallization of abundant zircon in ultramafic host rocks has implications for geochemistry of melts generated in the mantle and the widely reported depletion of high field strength elements in arc magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号