首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cross-sectional stability of double inlet systems is investigated using an exploratory model that combines Escoffier’s stability concept for the evolution of the inlet’s cross-sectional area with a two-dimensional, depth-averaged (2DH) hydrodynamic model for tidal flow. The model geometry consists of four rectangular compartments, each with a uniform depth, associated with the ocean, tidal inlets and basin. The water motion, forced by an incoming Kelvin wave at the ocean’s open boundary and satisfying the linear shallow water equations on the f -plane with linearised bottom friction, is in each compartment written as a superposition of eigenmodes, i.e. Kelvin and Poincaré waves. A collocation method is employed to satisfy boundary and matching conditions. The analysis of resulting equilibrium configurations is done using flow diagrams. Model results show that internally generated spatial variations in the water motion are essential for the existence of stable equilibria with two inlets open. In the hydrodynamic model used in the paper, both radiation damping into the ocean and basin depth effects result in these necessary spatial variations. Coriolis effects trigger an asymmetry in the stable equilibrium cross-sectional areas of the inlets. Furthermore, square basin geometries generally correspond to significantly larger equilibrium values of the inlet cross-sections. These model outcomes result from a competition between a destabilising (caused by inlet bottom friction) and a stabilising mechanism (caused by spatially varying local pressure gradients over the inlets).  相似文献   

2.
Bathymetric field data of tidal basins reveal two main classes of bottom patterns: (1) tidal bars, located near the entrance of the basin (length scale determined by the embayment width) and (2) global channel-shoal patterns which scale with the basin length. Previous models were able to describe only either one of these patterns. In this paper it is shown that both of them can be investigated within the framework of an idealised model of a rectangular tidal embayment, with fixed side walls and an erodible bed. The water motion is described by the depth-averaged shallow-water equations and is forced by a prescribed vertical tide at the seaward entrance. Sediment is transported as suspended load and only realistic values of the bottom friction parameter are considered. By assuming the ratio of embayment length over tidal wave length to be small, the model allows for a morphodynamic equilibrium, characterised by a spatially uniform tide moving over a bottom which slopes upwards toward the landward boundary. This equilibrium is unstable for a range of values of the model parameters, such that growth of bedforms occurs. Both global and local bottom patterns are found. In this study particular emphasis is laid on the mechanism governing the growth of a new type of localised bottom pattern. These patterns consist of small bars located near the entrance of the basin, resembling multiple row bars, and are found when advective sediment fluxes prevail over diffusive sediment fluxes. The formation process of these new bedforms is discussed in detail. The results agree well with field data. Comparison of the results with those obtained with a process-based, numerical model shows that, although the idealised model is strongly simplified, it is capable of producing the essential morphodynamics. Therefore, the idealised model is a useful tool to investigate mechanisms of bottom pattern growth.Responsible Editor: Iris Grabemann  相似文献   

3.
Back-barrier tidal flat systems are characterized by basins and inlets through which water is exchanged with the coastal sea by tidal water movements. The hydrographic and morphometric properties at the inlets and in the basins vary considerably, but there is little information available how biogeochemical properties in the water column at these different sites respond to these differences. Therefore, we investigated tidal dynamics of suspended particulate matter (SPM), particulate and dissolved organic carbon (DOC), chlorophyll a, phaeopigments, numbers of particle-associated (PA) and free-living bacteria (FL), bacterial biomass production, and concentrations of dissolved manganese (Mn). Samples were taken at the surface, a mid-depth and 1 m above the bottom at a fixed station at the inlet and in the basin of the Spiekeroog back-barrier tidal flat system in the German Wadden Sea. Five tidal cycles representative for typical seasonal situations, January (winter), April and May (late spring bloom), July (summer), and November (late fall) were studied in 2005 and 2006. In July, processes related to phytoplankton dynamics and bacterial decomposition were much more enhanced in the basin, whereas in April, these processes were enhanced at the inlet but were particularly low within the basin itself. The low values within the basin were a result of the settled phytoplankton spring bloom and represent a rather short period at the decline of this bloom. In November and January, differences were much less pronounced than during the growing season and restricted mainly to SPM and PA bacteria, exhibiting higher values in the basin. FL bacteria, DOC, and dissolved Mn exhibited different patterns and much less differences between the two stations, indicating that biogeochemical processes in the dissolved phase were controlled by different factors than PA biogeochemical processes. These differences reflect the retentive properties of the basin for particles and PA biogeochemical processes, particularly during the growing season, and in general emphasize the high productivity of back-barrier tidal flat systems.  相似文献   

4.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   

5.
Observational data, high-resolution numerical modelling results and a simple analytical theory are combined in this paper to demonstrate the dependence of the volume transports through tidal inlets on topographical or morphological parameters of a Wadden Sea system. The area of interest covers the East Frisian Wadden Sea and consists of seven weakly connected tidal basins. The observations include time series of tidal gauge data and surface currents measured at a pile station in the backbarrier basin of the island Langeoog, as well as several ADCP transects in the Accumer Ee tidal inlet. The numerical simulations are based on the 3-D primitive equation General Estuarine Transport Model (GETM) with a horizontal resolution of 200 m and terrain following vertical coordinates. The model is forced at its open boundaries with sea-level data from an operational model for the German Bight (German Hydrographic Office). The simple theoretical concepts presented illustrate the effect of topography (hypsometry) in the tidal basins on the temporal variability of the exchange of water. This topographic control is effectuated through the bottom slope in the areas prone to drying and flooding. For our study area it takes about twice as long from slack water to maximum flood current than from slack water to maximum ebb current. The underlying physics of this signal modulation from a more or less harmonic forcing at the open-sea boundary and the quantification of the contributing physical processes are the major results of this paper. Estimates based simply on volume conservation are consistent with observations and results from numerical modelling, but they do not completely capture the actual non-linear tidal response. Our analysis shows that at least during part of the tidal cycle characteristic topographic parameters of the inlet/bay system have a major impact on the rate of exchange of waters between the Wadden Sea and the open ocean. This impact is especially strong during the transition between flood and ebb conditions. The possible morphodynamic responses are also addressed focusing on some common (universal) topographic features in seven tidal basins.Responsible Editor: Hans Burchard  相似文献   

6.
This paper presents the development of a multiple‐station neural network for predicting tidal currents across a coastal inlet. Unlike traditional hydrodynamic models, the neural network model does not need inputs of coastal topography and bathymetry, grids, surface and bottom frictions, and turbulent eddy viscosity. Without solving hydrodynamic equations, the neural network model applies an interconnected neural network to correlate the inputs of boundary forcing of water levels at a remote station to the outputs of tidal currents at multiple stations across a local coastal inlet. Coefficients in the neural network model are trained using a continuous dataset consisting of inputs of water levels at a remote station and outputs of tidal currents at the inlet, and verified using another independent input and output dataset. Once the neural network model has been satisfactorily trained and verified, it can be used to predict tidal currents at a coastal inlet from the inputs of water levels at a remote station. For the case study at Shinnecock Inlet in the southern shore of New York, tidal currents at nine stations across the inlet were predicted by the neural network model using water level data located from a station about 70 km away from the inlet. A continuous dataset in May 2000 was used for the training, and another dataset in July 2000 was used for the verification of the neural network model. Comparing model predictions and observations indicates correlation coefficients range from 0·95 to 0·98, and the root‐mean‐square error ranges from 0·04 to 0·08 m s?1 at the nine current locations across the inlet. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In many tidal embayments, bottom patterns, such as the channel-shoal systems of the Wadden Sea, are observed. To gain understanding of the mechanisms that result in these bottom patterns, an idealized model is developed and analyzed for short tidal embayments. In this model, the water motion is described by the depth- and width-averaged shallow water equations and forced by a prescribed sea surface elevation at the entrance of the embayment. The bed evolves due to the divergence and convergence of suspended sediment fluxes. To model this suspended-load sediment transport, the three-dimensional advection–diffusion equation is integrated over depth and averaged over the width. One of the sediment fluxes in the resulting one-dimensional advection–diffusion equation is proportional to the gradient of the local water depth. In most models, this topographically induced flux is not present. Using standard continuation techniques, morphodynamic equilibria are obtained for different parameter values and forcing conditions. The bathymetry of the resulting equilibrium bed profiles and their dependency on parameters, such as the phase difference between the externally prescribed M2 and M4 tide and the sediment fall velocity, are explained physically. With this model, it is then shown that for embayments that are dominated by a net import of sediment, morphodynamic equilibria only exist up to a maximum embayment length. Furthermore, the sensitivity of the model to different morphological boundary conditions at the entrance of the embayment is investigated and it is demonstrated how this strongly influences the shape and number of possible equilibrium bottom profiles. This paper ends with a comparison between the developed model and field data for the Wadden Sea’s Ameland and Frisian inlets. When the model is forced with the observed M2 and M4 tidal constituents, morphodynamic equilibria can be found with embayment lengths similar to those observed in these inlets. However, this is only possible when the topographically induced suspended sediment flux is included. Without this flux, the maximum embayment length for which morphodynamic equilibria can be found is approximately a third of the observed length. The sensitivity of the model to the topographically induced sediment flux is discussed in detail.  相似文献   

8.
《Continental Shelf Research》2005,25(9):1115-1131
Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2–6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.  相似文献   

9.
Kagan  Boris A.  Sofina  Ekaterina V.  Rashidi  Ebrahim 《Ocean Dynamics》2012,62(10):1425-1442

A modified version of the 3D finite-element hydrostatic model QUODDY-4 is used to quantify the changes in the dynamics and energetics of the M 2 surface tide in the North European Basin, induced by the spatial variability in bottom roughness. This version differs from the original one, as it introduces a module providing evaluation of the drag coefficient in the bottom boundary layer (BBL) and by accounting for the equilibrium tide. The drag coefficient is found from the resistance laws for an oscillatory rotating turbulent BBL over hydrodynamically rough and incompletely rough underlying surfaces, describing how the wave friction factor as well as other resistance characteristics depend on the dimensionless similarity parameters for the BBL. It is shown that the influence of the spatial variability in bottom roughness is responsible for some specific changes in the tidal amplitudes, phases, and the maximum tidal velocities. These changes are within the model noise, while the changes in the averaged (over a tidal cycle) horizontal wave transport and the averaged dissipation of barotropic tidal energy may be of the same orders of magnitude as are the above energetic characteristics as such. Thus, contrary to present views, ignoring the spatial variability in bottom roughness at least in the North European Basin is only partially correct: it is valid for the tidal dynamics, but is liable to break down for the tidal energetics.

  相似文献   

10.
In this paper vertical structure of tidal current in a typically coastal raft-culture area is discussed by field measurement and a numerical model. The observations show that the vertical structure changed dramatically. A tidal surface boundary layer (SBL) is well formed due to the frictional effects induced by extensive, high-density suspended culture as surface obstruction. Both the aquaculture drag and the bottom friction are much higher than those in non-raft-culture areas, and show an obvious variation with tidal flow. The significant earlier ebbing and earlier flooding appear in the upper water column instead of the seabed. And the maximal phase lag is about 1 h within one tide cycle. A 1D hydrodynamic model was modified to include the SBL and parameterized with the field data. It replicated the observed velocity profile and was then used to investigate the impacts of varying culture density and bottom friction on the vertical tidal-current structure. Modeling results indicate that the surface current velocity was largely damped because culture activities enhanced the frictional effects on flow intensively. The magnitude and vertical structure of tidal current are determined together with aquaculture drag and bottom friction. In addition, the vertical velocity structure has a nonlinear trend along with culture density and bottom friction. This study is a theoretical foundation for optimizing aquaculture configuration through regulating culture density and species distribution.  相似文献   

11.
An idealized process-based model is developed to investigate tidal dynamics in the North Sea. The model geometry consists of a sequence of different rectangular compartments of uniform depth, thus, accounting for width and depth variations in a stepwise manner. This schematization allows for a quick and transparent solution procedure. The solution, forced by incoming Kelvin waves at the open boundaries and satisfying the linear shallow water equations on the f plane with bottom friction, is in each compartment written as a superposition of eigenmodes, i.e. Kelvin and Poincaré waves. A collocation method is employed to satisfy boundary and matching conditions. First, the general resonance properties of a strongly simplified geometry with two compartments, representing the Northern North Sea and Southern Bight, are studied. Varying the forcing frequency while neglecting bottom friction reveals Kelvin and Poincaré resonance. These resonances continue to exist (but with lower amplification and a modified spatial structure) when adding the Dover Strait as a third compartment and separating the solutions due to forcing from either the north or the south only. Including bottom friction dampens the peaks. Next, comparison with tide observations along the North Sea coast shows remarkable agreement for both semi-diurnal and diurnal tides. This result is achieved with a more detailed geometry consisting of 12 compartments fitted to the coastline of the North Sea. Further simulations emphasize the importance of Dover Strait and bottom friction. Finally, it is found that a sea level rise of 1 m, uniformly applied to the entire North Sea, amplifies the M2-elevation amplitudes almost everywhere along the coast, with an increase of up to 8 cm in Dover Strait. Bed level changes of ±1 m, uniformly applied to the Southern Bight only, imply weaker changes, with changes in coastal M2-elevation amplitudes below 5 cm.  相似文献   

12.
In this study, the artificial opening of a new tidal inlet in an existing multiple inlet system is shown to significantly modify the adjacent nearshore and backbarrier morphology, as well as both updrift and downdrift shorelines. The study focuses on the dominant Faro‐Olhão and Armona inlets in the Ria Formosa barrier island system of southern Portugal. The equilibrium state and future evolution of the system are inferred using a range of morphological and hydrodynamic indicators, including the evolution of the inlet cross‐section, changes in tidal prism, and changes in the dimensions (length and area) of barrier islands. The results reveal how the morphology of an interconnected two‐inlet bay system and the adjacent coastlines has evolved following the artificial opening and stabilization of Faro‐Olhão inlet since 1929. A clear relationship between barrier island size, inlet cross‐section/width, and tidal prism is demonstrated. Decadal time‐scale changes in the tidal prism of the two interconnected inlets are shown to be the main mechanism responsible for morphological change, and have resulted in the remobilization of ebb‐tidal delta sediments deposited during previous hydraulic configurations. These changes, in turn, have contributed to a narrowing of Armona inlet and an increase in the size of Culatra Island. The work highlights the importance of ebb‐tidal deltas both as sand reservoirs and as conduits through which sand exchange between estuaries or lagoons and the open coast is regulated. It also shows the pivotal role of ebb‐tidal deltas in trapping longshore‐transported sediment and releasing it again during periods of increased wave activity. The findings have implications regarding the accurate assessment of the stability of multiple inlet systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Lagoonal tidal inlets are a typical morphology of the Central Coast of Vietnam. Recently, navigation channels in these inlets have become increasingly threatened by siltation. This study analyses the relations between sediment distribution and transport trends (using the technique of Sediment Trend Analysis-STA■) in the lagoonal system of the De Gi inlet and then proposes appropriate countermeasures against sand deposition in the navigation channel. The STA identified three types of transport trends in the De Gi inlet, namely dynamic equilibrium, net accretion, and net erosion. Processes associated with the tidal prism have resulted in trends of sediment transport and deposition across the flood and ebb tidal shoals, which maintain a present cross-sectional area of about 1000m^2. However, longshore sediment transport from north to south resulting from northeast waves cause additional sand deposition in the channel. In addition, the effects of refraction associated with a nearby headland and jetty also increase sedimentation. These processes provide the main reasons for sediment deposition in the De Gi inlet. Short term and regular dredging helps to maintain the navigation channel. A system comprised of three jetties (north, south, and weir) is necessary to ensure the longterm cross-sectional stability of the navigation channel.  相似文献   

14.
Salut-Mengabong Lagoon is located at the west coast of Sabah facing the South China Sea. At the bay side of the main inlet the lagoon splits into Salut and Mengabong Channels. Sediment dynamics at the inlets of the lagoon have recently received considerable attention. But any direct measurement of hydrodynamics and sediment flux are yet to be well documented. This study covers the field measurements of current velocity, water flux, suspended sediment concentration and sediment flux across the three transects (main inlet, Salut entrance and Mengkabong entrance) during typical spring and neap tidal cycles in southwest monsoon and northeast monsoon. Temporal variations and time-averaged values of measured parameters are discussed. The inlets of Salut-Mengkabong Lagoon are found to be ebb-dominated. The time-averaged velocities during spring tidal measurements are found to be higher in the main inlet followed by Mengkabong entrance and Salut entrance. Suspended sediment concentration and sediment fluxes are substantially higher in spring tidal cycles compared to the same in neap tidal cycles. During spring tidal cycles, ebb tidal sediment fluxes are higher than the flood tidal fluxes. The ebb dominated flux across the main inlet led to the large ebb shoal.  相似文献   

15.
An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having either a uniform depth or two depths separated by a transverse topographic step. The problem is forced by an incoming Kelvin wave at the open end, while allowing waves to radiate outward. The solution in each compartment is written as the superposition of (semi)-analytical wave solutions in an infinite channel, individually satisfying the depth-averaged linear shallow water equations on the f plane, including bottom friction. A collocation technique is employed to satisfy continuity of elevation and flux across the longitudinal topographic steps between the compartments. The model results show that the tidal wave in shallow parts displays slower propagation, enhanced dissipation and amplified amplitudes. This reveals a resonance mechanism, occurring when the length of the shallow end is roughly an odd multiple of the quarter Kelvin wavelength. Alternatively, for sufficiently wide basins, also Poincaré waves may become resonant. A transverse step implies different wavelengths of the incoming and reflected Kelvin wave, leading to increased amplitudes in shallow regions and a shift of amphidromic points in the direction of the deeper part. Including the shallow parts near the basin’s closed end (thus capturing the Kelvin resonance mechanism) is essential to reproduce semi-diurnal and diurnal tide observations in the Gulf of California, the Adriatic Sea and the Persian Gulf.  相似文献   

16.
The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure–temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal (K 1, O 1, P 1, Q 1) and four semi-diurnal (M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s?1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.  相似文献   

17.

The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200 km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.

  相似文献   

18.
First, we investigated some aspects of tsunami–tide interactions based on idealized numerical experiments. Theoretically, by changing total ocean depth, tidal elevations influence the speed and magnitude of tsunami waves in shallow regions with dominating tidal signals. We tested this assumption by employing a simple 1-D model that describes propagation of tidal waves in a channel with gradually increasing depth and the interaction of the tidal waves with tsunamis generated at the channel's open boundary. Important conclusions from these studies are that computed elevations by simulating the tsunami and the tide together differ significantly from linear superposing of the sea surface heights obtained when simulating the tide and the tsunami separately, and that maximum tsunami–tide interaction depends on tidal amplitude and phase. The major cause of this tsunami–tide interaction is tidally induced ocean depth that changes the conditions of tsunami propagation, amplification, and dissipation. Interactions occur by means of momentum advection, bottom friction, and variable water flux due to changing total depth and velocity. We found the major cause of tsunami–tide interactions to be changing depth. Secondly, we investigate tsunami–tide interactions in Cook Inlet, Alaska, employing a high-resolution 2-D numerical model. Cook Inlet has high tides and a history of strong tsunamis and is a potential candidate for tsunami impacts in the future. In agreement with previous findings, we find that the impacts of tsunamis depend on basin bathymetries and coastline configurations, and they can, in particular, depend on tsunami–tide interactions. In regions with strong tides and tsunamis, these interactions can result in either intensification or damping of cumulative tsunami and tide impacts, depending on mean basin depth, which is regulated by tides. Thus, it is not possible to predict the effect of tsunami–tide interaction in regions with strong tides without making preliminary investigations of the area. One approach to reduce uncertainties in tsunami impact in regions with high tides is to simulate tsunamis together with tidal forcing.  相似文献   

19.
The finite element ocean tide model of Le Provost and Vincent (1986) has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski’s solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.  相似文献   

20.
Abstract

It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号