首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variations in the geomagnetic cutoff rigidity in Irkutsk, Alma-Ata, and Beijing in October–November 2003 were calculated using ground-based measurements of cosmic ray intensity from the worldwide network of stations and GOES spacecraft. The calculated variations in geomagnetic cutoff rigidity are presented together with D st variations of the geomagnetic field. The obtained results are compared to calculations performed using the Tsyganenko model of the magnetosphere.  相似文献   

2.
The seasonal effect of the daily variations in the cosmic ray intensity on the conductivity of the Earth-high-conductivity layer column has been analyzed based on the observations of the cosmic ray intensity, atmospheric current, and electric field vertical component, performed from summer 2006 to spring 2007 at Apatity station. The method for correcting the measurements of the atmospheric current and electric field vertical component under complex tropospheric conditions by numerically simulating the spatial structure of the current and field lines in the observation region has been proposed. It has been indicated that cosmic rays are the main source of ions in the winter polar lower atmosphere and are responsible for the type of daily variations in the conductivity, whereas the daily variations in the atmospheric current more depends on the conductivity rather than on the vertical electric field.  相似文献   

3.
Summary The variations of the initialh E s height are investigated in the solar cycle 1957–1968, deriving the regressive dependency:h E s =121.4–6·10–2 R referring to the median monthly values at a solar zenith angle =75°. The similar variations ofh E s (R) during the day and night are interpreted as a domination of the sporadic layer formation from a redistribution of the day-time ionization and secondary participation of nightly ionizing sources. The analogous cyclich E s andh E variations confirm this conclusion while the seasonal variations in the state of the sporadic layer show outlined dynamical effects. The comparatively not big cyclic variation in the spatial state of theE-region are considered to confirm the predominating ionizing action of the ultraviolet range (933–1038 Å) in the lower part of theE-region, while the soft X-radiation influences mainly the near maximum part of this region.  相似文献   

4.
In terms of the general endogeneous evolution of the lithosphere, the continental crystalline crust and the uppermost mantle, formed by regional metamorphic and magmatic processes, show mineral paragenesis stratification, expressed by a regular mineral sequence. The continuous macrolayering of mineral paragenesis through lithospheric depth profile is caused by phase transformations and variations in composition of complex natural systems, and affects the vertical distribution of seismic velocities,V p,V s, and other physical parameters.To evaluate palaeotemperatures (crystallization temperatures of mineral paragenesis), consistentV pandV s (Z) velocity models for the consolidated crust of two regionally separated areas of different geological structures — Precambrian shield (Voronezh Massif) and a young fold-mountain structure in the central part of the Transasian orogeneous belt (Himalaya) — are used as starting data.The velocity models are recalculated into (Z) and (Z) profiles (Z) being the seismic parameter. (Z) the Debye temperature). These, according to Debye theory, allow the determination of variations in entropy, thermodynamic and temperature gradients at the time of crustal generation.For the two regions chosen, palaeotemperature distributions are eventually calculated for the depth intervals given by velocity profiles. Crystallization temperatures calculated from seismic data show good agrrement with the values obtained from mineralogical thermobarometry.  相似文献   

5.
Temporal variations in the nine elements of the Earth's inertia ellipsoid due to sea surface topography dynamics were derived from TOPEX/POSEIDON altimeter data 1993 - 1996. The variations amount to about 10 mm in the position of the center of the Earth's inertia ellipsoid (E i ), 0.15' in the polar axis direction of E i and to about 0.0003 in the denominator of its polar flattening. The approach used is based on the temporal variations of distortions computed by means of the geopotential model EGM96 which is used as reference.  相似文献   

6.
We study the cosmic ray modulation during different solar cycles and polarity states of the heliosphere. We determine (a) time lag between the cosmic ray intensity and the solar variability, (b) area of the cosmic ray intensity versus solar activity modulation loops and (c) dependence of the cosmic ray intensity on the solar variability, during different solar activity cycles and polarity states of the heliosphere. We find differences during odd and even solar cycles. Differences during positive and negative polarity periods are also found. Consequences and implications of the observed differences during (i) odd and even cycles, and (ii) opposite polarity states (A<0 and A>0) are discussed in the light of the modulation models, including drift effects.  相似文献   

7.
The variations in the rigidity spectrum and anisotropy of cosmic rays in December 2006 have been studied based on the surface measurements of the cosmic ray intensity at the global network of stations, using the method of global spectrographic survey. It has been indicated that the highest degree of anisotropy (to ~50%) with the maximal intensity of particles with a rigidity of 4 GV in the direction from the Sun (an asymptotic direction of about ?25° and 160°) was observed at 0400 UT on December 13. The parameters of the cosmic ray rigidity spectrum, which reflect the electromagnetic characteristics of the heliospheric fields during the studied period, have been determined when the surface and satellite measurements of protons in the energy range from several megaelectronvolts to several tens of gigaelectronvolts were jointly analyzed. The observed anisotropy and variations in cosmic rays in a wide energy range have been explained based on an analysis of the results.  相似文献   

8.
The heterogeneous hydraulic conductivity (K) in water‐bearing formations controls subsurface flow and solute transport processes. Geostatistical techniques are often employed to characterize the K distribution in space based on the correlation between K measurements. However, at the basin scale, there are often insufficient measurements for inferring the spatial correlation. This is a widespread problem that we address in this study using the example of the Betts Creek Beds (BCB) in the Galilee Basin, Australia. To address the lack of data, we use a 1D stochastic fluvial process‐based model (SFPM) to quantify the total sediment thickness, Z( x ), and the sandstone proportion over the total thickness, Ps( x ), in the BCB. The semivariograms of Z( x ) and Ps( x ) are then extracted and used in sequential Gaussian simulation to construct the 2D spatial distribution of Z( x ) and Ps( x ). Ps( x ) can be converted to a K distribution based on classical averaging methods. The results demonstrate that the combination of SFPM and geostatistical simulation allows for the evaluation of upscaled K distribution with a limited number of K measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.

The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.

  相似文献   

10.
The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.  相似文献   

11.
This study was undertaken to evaluate the effects of climatic variability on inter‐annual variations in each component of evapotranspiration (ET) and the total ET in a temperate coniferous forest in Japan. We conducted eddy covariance flux and meteorological measurements for 7 years and parameterized a one‐dimensional multi‐layer biosphere‐atmosphere model (Kosugi et al., 2006 ) that partitions ET to transpiration (Tr), wet‐canopy evaporation (Ewet), and soil evaporation (Esoil). The model was validated with the observed flux data. Using the model, the components of ET were estimated for the 7 years. Annual precipitation, ET, Tr, Ewet, and Esoil over the 7 years were 1536 ± 334 mm, 752 ± 29 mm, 425 ± 37 mm, 219 ± 34 mm, and 108 ± 10 mm, respectively. The maximum inter‐annual fluctuation of observed ET was 64 mm with a coefficient of variance (CV) of 2.7%, in contrast to relatively large year‐to‐year variations in annual rainfall (CV = 20.1%). Tr was related to the vapour pressure deficit, incoming radiation, and air temperature with relatively small inter‐annual variations (CV = 8.2%). Esoil (CV = 8.6%) was related mainly to the vapour pressure deficit. Ewet was related to precipitation with large inter‐annual variations (CV = 14.3%) because of the variability in precipitation. The variations in Ewet were counterbalanced by the variations in Tr and Esoil, producing the small inter‐annual variations in total ET. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Summary A modified method of computing theS q -range in terms ofR x inH, D andZ has been suggested. Mean quiet-day daily rangesR x , have been computed for five Indian stations usingH, D andZ data for selected years. The seasonal and latitudinal variation ofR x (H), R x (Z) andR x (D) are discusses. Thee-season maximum inR x (H) andR x (Z) is attributed to the decrease in the distance between the foci during equinoxes; the electrojet and theS q -foci movement with seasons have little influence onS q (D). It is inferred that the electrojet current is independent of the worldwideS q current system and stands with its own return currents.The variation of lunar semi-diurnal tide inH[L 2 (H)] with the dip latitude in Indian region shows a secondary peak at 9° N dip latitude. This secondary peak in theL 2 (H) is termed as Lunar secondary electrojet, and it is suggested that this is possibly produced by magneto-acoustic oscillations due to the drift motion of the charged particles that produce the primary jet in a direct transverse to itself.  相似文献   

13.
Abstract

We have contrived a model E(αω) α μ?1ω?p+1(ω 2?ω i 2)?+ for the distribution of internal wave energy in horizontal wavenumber, frequency-space, with wavenumber α extending to some upper limit μ(ω) α ω r-1 (ω 2?ω i 2)½, and frequency ω extending from the inertial frequency ω i to the local Väisälä frequency n(y). The spectrum is portrayed as an equivalent continuum to which the modal structure (if it exists) is not vital. We assume horizontal isotropy, E(α, ω) = 2παE1, α2, ω), with α1, α2 designating components of α. Certain moments of E1, α2, ω) can be derived from observations. (i) Moored (or freely floating) devices measuring horizontal current u(t), vertical displacement η(t),…, yield the frequency spectra F (u,η,…)(ω) = ∫∫ (U 2, Z 2,…)E1, ∞2, ω) dα12, where U, Z,… are the appropriate wave functions. (ii) Similarly towed measurements give the wavenumber spectrum F (…)(α1) = ∫∫… dα2 dω. (iii) Moored measurements horizontally separated by X yield the coherence spectrum R(X, ω) which is related to the horizontal cosine transform ∫∫ E(α1, α2 ω) cos α1 Xdα11. (iv) Moored measurements vertically separated by Y yield R(Y, ω) and (v) towed measurements vertically separated yield R(Y, α1), and these are related to similar vertical Fourier transforms. Away from inertial frequencies, our model E(α, ω) α ω ?p-r for α ≦ μ ω ω r, yields F(ω) ∞ ω ?p, F1) ∞ α1 ?q, with q = (p + r ? 1)/r. The observed moored and towed spectra suggest p and q between 5/3 and 2, yielding r between 2/3 and 3/2, inconsistent with a value of r = 2 derived from Webster's measurements of moored vertical coherence. We ascribe Webster's result to the oceanic fine-structure. Our choice (p, q, r) = (2, 2, 1) is then not inconsistent with existing evidence. The spectrum is E(∞, ω) ∞ ω ?1(ω 2?ω i 2 ?1, and the α-bandwith μ ∞ (ω 2?ω i 2)+ is equivalent to about 20 modes. Finally, we consider the frequency-of-encounter spectra F([sgrave]) at any towing speed S, approaching F(ω) as SS o, and F1) for α1 = [sgrave]/S as SS o, where S o = 0(1 km/h) is the relevant Doppler velocity scale.  相似文献   

14.
Abstract

Two entities of importance in hydrological droughts, viz. the longest duration, LT , and the largest magnitude, MT (in standardized terms) over a desired time period (which could also correspond to a specific return period) T, have been analysed for weekly flow sequences of Canadian rivers. Analysis has been carried out in terms of week-by-week standardized values of flow sequences, designated as SHI (standardized hydrological index). The SHI sequence is truncated at the median level for identification and evaluation of expected values of the above random variables, E(LT ) and E(MT ). SHI sequences tended to be strongly autocorrelated and are modelled as autoregressive order-1, order-2 or autoregressive moving average order-1,1. The drought model built on the theorem of extremes of random numbers of random variables was found to be less satisfactory for the prediction of E(LT ) and E(MT ) on a weekly basis. However, the model has worked well on a monthly (weakly Markovian) and an annual (random) basis. An alternative procedure based on a second-order Markov chain model provided satisfactory prediction of E(LT ). Parameters such as the mean, standard deviation (or coefficient of variation), and lag-1 serial correlation of the original weekly flow sequences (obeying a gamma probability distribution function) were used to estimate the simple and first-order drought probabilities through closed-form equations. Second-order probabilities have been estimated based on the original flow sequences as well as SHI sequences, utilizing a counting method. The E(MT ) can be predicted as a product of drought intensity (which obeys the truncated normal distribution) and E(LT ) (which is based on a mixture of first- and second-order Markov chains).

Citation Sharma, T. C. & Panu, U. S. (2010) Analytical procedures for weekly hydrological droughts: a case of Canadian rivers. Hydrol. Sci. J. 55(1), 79–92.  相似文献   

15.
The effect of solar and galactic cosmic ray variations on the duration of elementary synoptic processes (ESPs) in the Atlantic-European sector of the Northern Hemisphere has been studied. It has been found that solar cosmic ray (SCR) bursts result in an increase in the duration of ESPs, which belong to the western and meridional forms of atmospheric circulation. Forbush decreases in galactic cosmic rays (GCRs) are accompanied by an increase in the duration of ESPs, which belong to the meridional atmospheric circulation form, and in a decrease in the duration of ESPs, which are related to the western and eastern circulation forms. It has been assumed that the observed variations in the ESP duration are caused by the effect of short-period cosmic ray variations on the intensity of cyclonic processes at middle and high latitudes, namely, the regeneration of cyclones near the southeastern coast of Greenland after SCR bursts and the development of blocking anticyclones over the northeastern Atlantic, Europe, and Scandinavia during GCR Forbush decreases.  相似文献   

16.
This study compares the Isis II satellite measurements of the electron density and temperature, the integral airglow intensity and volume emission rate at 630 nm in the SAR arc region, observed at dusk on 4 August, 1972, in the Southern Hemisphere, during the main phase of the geomagnetic storm. The model results were obtained using the time dependent one-dimensional mathematical model of the Earth’s ionosphere and plasmasphere (the IZMIRAN model). The major enhancement to the IZMIRAN model developed in this study to explain the two component 630 nm emission observed is the analytical yield spectrum approach to calculate the fluxes of precipitating electrons and the additional production rates of N+2, O+2, O+(4S), O+(2D), O(2P), and O+(2P) ions, and O(1D) in the SAR arc regions in the Northern and Southern Hemispheres. In order to bring the measured and modelled electron temperatures into agreement, the additional heating electron rate of 1.05 eV cm−3 s−1 was added in the energy balance equation of electrons at altitudes above 5000 km during the main phase of the geomagnetic storm. This additional heating electron rate determines the thermally excited 630 nm emission observed. The IZMIRAN model calculates a 630 nm integral intensity above 350 km of 4.1 kR and a total 630 nm integral intensity of 8.1 kR, values which are slightly lower compared to the observed 4.7 kR and 10.6 kR. We conclude that the 630 nm emission observed can be explained considering both the soft energy electron excited component and the thermally excited component. It is found that the inclusion of N2(v > 0) and O2(v > 0) in the calculations of the O+(4S) loss rate improves the agreement between the calculated Ne and the data on 4 August, 1972. The N2(v > 0) and O2(v > 0) effects are enough to explain the electron density depression in the SAR arc F-region and above F2 peak altitude. Our calculations show that the increase in the O+ + N2 rate factor due to the vibrationally excited nitrogen produces the 5–19% reductions in the calculated quiet daytime peak density and the 16–24% decrease in NmF2 in the SAR arc region. The increase in the O+ + N2 loss rate due to vibrationally excited O2 produces the 7–26% decrease in the calculated quiet daytime peak density and the 12–26% decrease in NmF2 in the SAR arc region. We evaluated the role of the electron cooling rates by low-lying electronic excitation of O2(a1δg) and O2(b1σg+), and rotational excitation of O2, and found that the effect of these cooling rates on Te can be considered negligible during the quiet and geomagnetic storm period 3–4 August, 1972. The energy exchange between electron and ion gases, the cooling rate in collisions of O(3P) with thermal electrons with excitation of O(1D), and the electron cooling rates by vibrational excitation of O2 and N2 are the largest cooling rates above 200 km in the SAR arc region on 4 August, 1972. The enhanced IZMIRAN model calculates also number densities of N2(B3πg+), N2(C3πu), and N2(A3σu+) at several vibrational levels, O(1S), and the volume emission rate and integral intensity at 557.7 nm in the region between 120 and 1000 km. We found from the model that the integral integral intensity at 557.7 nm is much less than the integral intensity at 630 nm.  相似文献   

17.
A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ~10000 to ~100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.  相似文献   

18.
This work represents a physical interpretation of cosmic ray modulation in the 22nd–24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008–2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form K ij R 2?μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd–24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.  相似文献   

19.
Azimuthal variation in AVO response for fractured gas sands   总被引:1,自引:0,他引:1  
Natural fractures in reservoirs play an important role in determining fluid flow during production, and hence the density and orientation of fractures is of great interest. In the presence of aligned vertical fractures, the reflection amplitude at finite offset varies with azimuth. The effect of natural fractures on the azimuthal AVO response from a gas-sandstone reservoir encased within shale is investigated. A simple expression for the difference in P-wave reflection coefficient from the top of the reservoir parallel and perpendicular to the strike of the fractures is obtained in terms of the normal and tangential compliances, ZN and ZT, of the fractures. This expression is valid for small anisotropy and material contrasts and is compared with the results of numerical modelling. For a given value of ZT, the azimuthal variation in reflection coefficient at moderate offsets is found to increase with decreasing ZN/ZT. For gas-filled open fractures ZN/ZT ≈ 1, but a lower ratio of ZN/ZT may result from the presence of cement or clay within the fractures, or from the presence of a fluid with non-zero bulk modulus. For ZN/ZT = 1 and moderate offsets, the variation with offset of the reflection coefficient from the top of the fractured unit is dominated by the contrast in Poisson's ratio between the gas sand and the overlying shale, the effect of fractures only becoming noticeable as the critical angle for the unfractured sandstone is approached. However, for reflections from the base of the fractured unit, the variation in reflection amplitude with azimuth is much greater at conventional seismic offsets than for the reflection from the top. Azimuthal variations in the strength of the reflection from the top of the reservoir depend only on the variation in reflection coefficient, whereas the raypath is also a function of azimuth for reflections from the base of the fractured unit, leading to stronger, more visible, variations of AVO with azimuth. It follows that an azimuthal variation in AVO due to fractures in the overburden may be misinterpreted as due to the presence of aligned fractures in the reservoir.  相似文献   

20.
Abstract

The spatio-temporal variations of reference crop evapotranspiration (ETref) reflect the combined effects of meteorological variables, primarily wind speed, relative humidity, net radiation and air temperature. This study investigated the spatial distribution and temporal trends of ETref (calculated by the FAO-56 Penman-Monteith equation), pan evaporation (Epan) and pan coefficient (Kp) in a 140?×?103 km2 semi-humid to semi-arid area in China. The results show that: (i) although the spatial distributions of ETref and Epan are roughly similar and their spatial correlation is high over the growing season, Kp varied considerably in space due to high humidity in the east of the region and low humidity in the southwest; (ii) the monthly variations of ETref and Epan are similar to that of net radiation and opposite to that of relative humidity, while the monthly variation of Kp is similar to that of relative humidity and opposite to that of wind speed, and the long-term trend is slightly increasing for ETref and Epan, while significantly (10% significance level) increasing for Kp; and (iii) generally, the time series of ETref and Epan from 1951 to 2001 could be divided into three phases due to variations of meteorological variables.

Citation Liang, L.-Q., Li, L.-J. & Liu, Q. (2011) Spatio-temporal variations of reference crop evapotranspiration and pan evaporation in the West Songnen Plain of China. Hydrol. Sci. J. 56(7), 1300–1313.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号