首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》2005,20(8):1445-1460
Changes in precipitate mineralogy, morphology, and major and trace element concentrations and associations throughout 5 coal mine drainage (CMD) remediation systems treating discharges of varying chemistries were investigated in order to determine the factors that influence the characteristics of precipitates formed in passive systems. The 5 passive treatment systems sampled in this study are located in the bituminous coal fields of western Pennsylvania and northern Maryland, and treat discharges from Pennsylvanian age coals. The precipitates are dominantly (>70%) goethite. Crystallinity varies throughout an individual system, and lower crystallinity is associated with enhanced sorption of trace metals. Degree of crystallinity (and subsequently morphology and trace metal associations) is a function of the treatment system and how rapidly Fe(II) is oxidized, forms precipitates, aggregates and settles. Precipitates formed earlier in the passive treatment systems tend to have the highest crystallinity and the lowest concentrations of trace metal cations. High surface area and cation vacancies within the goethite structure enable sorption and incorporation of metals from coal mine drainage-polluted waters. Sorption affinities follow the order of Zn > Co  Ni > Mn. Cobalt and Ni are preferentially sorbed to Mn oxide phases when these phases are present. As pH increases in the individual CMD treatment systems toward the pHpzc of goethite, As sorption decreases and transition metal (Co, Mn, Ni and Zn) sorption increases. Sulfate, Na and Fe(II) concentrations may all influence the sorption of trace metals to the Fe hydroxide surface. Results of this study have implications not only for solids disposal and resource recovery but also for the optimization of passive CMD treatment systems.  相似文献   

2.
Black carbon (BC), especially biochar, is a potential material for the remediation of hydrophobic organic compounds (HOCs) pollution in soils and sediments. Recent studies have reported that the adsorption capability of BC in sediment was reduced as time increased. It was hypothesised that this behaviour was caused by the presence of natural organic matter (NOM), but few systematic studies have examined the influence of NOM on the sorption ability of BC in sediment (S). The results of this study revealed that a humic acid (HA) coating changed the surface properties, blocked the micropores, and decreased the sorption capacity of rice-straw biochar (RBC) towards pentachlorophenol. With increasing aging time, the reductions in the sorption capacity of the S + RBC and S + HA + RBC systems occurred more rapidly than in the S + HA/RBC (HA-coated RBC) system, and the sorption curves became closer to that of the S + HA/RBC system, indicating that HA may play a primary role in reducing the sorption capacity of RBC in the sediment. With higher HA contents, the sorption capacity of the complex sediments was lower and decreased more rapidly.  相似文献   

3.
The partitioning of trace metal(oid)s between colloidal and “truly” dissolved fractions in sediment pore waters is often overlooked due to the analytical challenge; indeed, only small volumes are available and filtration membranes are rapidly clogged. Moreover, metal(oid)s are subject to co-precipitate with Fe. In this study, tangential flow filtration (TFF) was assessed for the fractionation of Fe, Mn, Cu, As, Co, Ni, Zn and Cd in sediment pore waters with a 5 kDa cut-off size membrane. Five natural sediments were collected and used for different tests. Results on blank samples showed that this technique was appropriate for Fe, Mn, Co, Zn, As and Cd. Although the applied concentration factors (CF) were low (<7.4) due to the small available volume of pore waters (50 mL), it was shown that colloidal concentrations obtained from the TFF procedure were similar whatever the applied concentration factor. The mass balance approach showed satisfying results (100 ± 25%) for Mn, Co, Zn and As. Mass balances were higher than 130% and highly variable for Cd, Ni and Cu. For Fe, mass balance was reproducible but low (71 ± 10%), probably due to sorption of positively charged Fe oxides on the membrane. Applying this method to five contrasting metal(oid)-contaminated sediments, it was shown that Mn, As, Co and Fe were mainly present in the “truly” dissolved phase (<5 kDa). This technique is a necessary step to assess sediment toxicity and bioavailability of metal(oid)s and could be of great interest for emergent pollutants such as nanometals.  相似文献   

4.
Uranium(VI) sorption onto kaolinite was investigated as a function of pH (3–12), sorbate/sorbent ratio (1 × 10?6–1 × 10?4 M U(VI) with 2 g/L kaolinite), ionic strength (0.001–0.1 M NaNO3), and pCO2 (0–5%) in the presence or absence of 1 × 10?2–1 × 10?4 M citric acid, 1 × 10?2–1 × 10?4 M EDTA, and 10 or 20 mg/L fulvic acid. Control experiments without-solids, containing 1 × 10?6–1 × 10?4 M U(VI) in 0.01 M NaNO3 were used to evaluate sorption to the container wall and precipitation of U phases as a function of pH. Control experiments demonstrate significant loss (up to 100%) of U from solution. Although some loss, particularly in 1 × 10?5 and 1 × 10?4 M U experiments, is expected due to precipitation of schoepite, adsorption on the container walls is significant, particularly in 1 × 10?6 M U experiments. In the absence of ligands, U(VI) sorption on kaolinite increases from pH ~3 to 7 and decreases from pH ~7.5 to 12. Increasing ionic strength from 0.001 to 0.1 M produces only a slight decrease in U(VI) sorption at pH < 7, whereas 10% pCO2 greatly diminishes U(VI) sorption between pH ~5.5 and 11. Addition of fulvic acid produces a small increase in U(VI) sorption at pH < 5; in contrast, between pH 5 and 10 fulvic acid, citric acid, and EDTA all decrease U(VI) sorption. This suggests that fulvic acid enhances U(VI) sorption slightly via formation of ternary ligand bridges at low pH, whereas EDTA and citric acid do not form ternary surface complexes with the U(VI), and that all three ligands, as well as carbonate, form aqueous uranyl complexes that keep U(VI) in solution at higher pH.  相似文献   

5.
《Applied Geochemistry》2006,21(6):1044-1063
A suite of trace metals was analyzed in water and sediment samples from the Blesbokspruit, a Ramsar certified riparian wetland, to assess the impact of mining on the sediment quality and the fate of trace metals in the environment. Limited mobility of trace metals was observed primarily because of their high partition coefficient in alkaline waters. Nickel was most mobile with a mean Kd of 103.28 L kg−1 whereas Zr was least mobile with a mean Kd of 105.47 L kg−1. The overall trace metal mobility sequence, derived for the Blesbokspruit, in increasing order, is: Zr < Cr < Pb < Ba < V < Cu < Zn < Sr < Mn < U < Mo < Co < Ni. Once removed from the solution, most trace metals were preferentially associated with the carbonate and Fe–Mn oxide fraction followed by the exchangeable fraction of the sediments. Organic C played a limited role in trace metal uptake. Only Cu was primarily associated with the organic fraction whereas Ti and Zr were mostly found in the residual fraction. Compared to their regional background, Au and Ag were most enriched, at times by a factor of 20–400, in the sediments. Significant enrichment of U, Hg, V, Cr, Co, Cu and Zn was also observed in the sediments.The calculated geoaccumulation indices suggest that the sediments are very lightly to lightly polluted with respect to most trace metals and highly polluted with respect to Au and Ag. The metal pollution index (MPI) for the 20 sampled sites varied between 2.9 and 45.7. The highest MPI values were found at sites that were close to tailings dams. Sediment eco-toxicity was quantified by calculating the sediment quality guideline index (SQG-I). The calculated SQG-I values (0.09–0.69) suggest that the sediments at the study area have low to moderate potential for eco-toxicity.  相似文献   

6.
《Applied Geochemistry》2006,21(7):1240-1247
This paper reports the abundance of elemental S in drain sediments associated with acid sulfate soils. The sediments exhibited near-neutral pH (5.97–7.27), high concentrations of pore-water Fe2+ (1.37–15.9 mM) and abundant oxalate-extractable Fe (up to 4300 μmol g−1). Maximum acid-volatile sulfide (AVS) concentrations in each sediment profile were high (118–1019 μmol g−1), with AVS often exceeding pyrite-S. Elemental S occurred at concentrations of 13–396 μmol g−1, with the higher concentrations exceeding previous concentrations reported for other sedimentary systems. Up to 62% of reduced inorganic S near the sediment/water interface was present as elemental S, due to reaction between AVS and oxidants such as O2 and Fe(III). Significant correlation (r = 0.74; P < 0.05) between elemental S and oxalate-extractable Fe(III) is indicative of elemental S formation by in situ oxidation of AVS. The results indicate that AVS oxidation in near-surface sediments is dynamic in acidified coastal floodplain drains, causing elemental S to be a quantitatively important intermediate S fraction. Transformations of elemental S may therefore strongly influence water quality in ASS landscapes.  相似文献   

7.
The pollution and deterioration of most important vital rivers in the Katanga region, Democratic Republic of Congo (DRC) are mainly due to the discharge of untreated industrial effluents as well as to the mining and artisanal mineral exploitation activities. In this study, the concentrations of metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, and Pb) and major elements (Na, Mg, and K) in mining effluents, water and sediment samples of two main rivers of the district of Kolwezi (Katanga, DRC) were subjected to analysis by Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). The results showed that, in general, the metal concentrations in the sampling sites from the mining effluent and river waters exceed largely the World Health Organization and the Aquatic Quality Guidelines for the Protection of Aquatic Life recommendation limits. The highest metal concentrations in water and sediment samples were detected surrounding the mining effluents discharge. In the surface sediments of Luilu River, the values of 47,468 and 13,199 mg kg−1 were observed for Cu and Co, respectively. For the sediment samples from Musonoie River, the maximum values of 370.8 and 240.6 mg kg−1 for Cu and Co, respectively were observed. The results of this study suggest that the mining effluents being discharged into the rivers and the accumulation of pollutants in sediments might represent a source of toxicity for aquatic living organisms and could pose significant human health risks. The measures to establish a monitoring program and the application of wastewater treatment techniques to the mining effluents prior to discharge are recommended to reduce the load of contaminants into the receiving systems.  相似文献   

8.
Calcium carbonate scaling poses highly challenging tasks for its prediction and preventative action. Here an elemental, isotopic and modelling approach was used to decipher the evolution of alkaline tunnel drainage solutions and sinter formation mechanisms for 3 sites in Austria. Drainage solutions originate from local groundwater and form their characteristic chemical composition by interaction with shotcrete/concrete. This interaction is indicated by a positive correlation of dissolved K+ and pH (up to 12.3), and a decrease of aqueous Mg2+ by the formation of brucite (pH > 10.5). Variability in Ca2+ and DIC is strongly attributed to portlandite dissolution, calcite precipitation and CO2 exchange with the atmosphere, where the 13C/12C and 18O/16O signatures of calcite can be traced back to the source of carbonate. The internal PCO2 value is a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of the degree of calcite saturation with a threshold value of 10−6.15 atm at 25 °C (pH  11). Precipitation rates of calcite are highest at pH  10. Mixing of groundwater-like solutions with strong alkaline drainage solutions has to be considered as a crucial factor for evaluating apparent composition of drainage solutions and calcite precipitation capacities.  相似文献   

9.
We examined the ability of biogenic manganese oxide (BMO) formed in the cultures of a Mn(II) oxidizing fungus, Acremonium strictum strain KR21-2, to sequester Co(II) and found that the newly formed BMO effectively sequestered Co(II) under aerobic conditions with virtually no release of Mn(II). Under anaerobic conditions, smaller amounts of Co(II) were sequestered and a significant amount of Mn(II) was released. Similar trends were observed when the BMOs were poisoned with 50 mM NaN3 or heated at 85 °C for 1 h. X-ray absorption near-edge structure spectroscopy and two-step extraction confirmed that oxidation of Co(II) to Co(III) occurs with BMOs with higher oxidation efficiency under aerobic conditions. These results demonstrate that BMOs can reoxidize Mn(II) through the Mn(II) oxidase associated with the BMO phase and can subsequently provide a new reaction site for Co sequestration. The ability of BMO to sequester Co(II) was also found to be long lasting in 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES) buffer (pH 7.0) containing no nutrients to maintain fungal growth, because sequential treatment of BMOs with the Co(II) solution every 24 h for at least 8 days led to Co(II) sequestration. In addition, Co accumulation in the solid phase was eventually 2.48-fold relative to the accumulation of Mn oxide (molar ratio). X-ray diffraction results suggest that the continuing Co(II) oxidation by newly formed BMOs results in the formation of heterogenite (β-CoOOH) aggregates. Assays using the concentrated Mn(II) oxidase crude solution showed that the preformed Mn oxide phase was important for further Mn(II) oxidation in coexisting Co(II). The fact that the coexisting Co(II) was less inhibitory to Mn(II) oxidation if the preformed Mn oxide phase was present suggests a possible electron path from Co(II) to the final electron acceptor O2 through BMO and Mn(II) oxidase in BMO/enzyme aggregation. These results suggest that fungal BMOs supporting Mn(II) oxidase activity can serve as an effective Co(II) sequestering material, without the need for additional nutrients.  相似文献   

10.
The historical (1932–1971) Bralorne mine produced over 87 million grams of Au from an archetypal orogenic lode gold deposit in southwest British Columbia. High concentrations of As in mine drainage, however, represent an on-going environmental concern prompting a detailed study of effluent chemistry. The discharge rate at the mine portal was monitored continuously over a fourteen-month period during which effluent samples were collected on a quasi-weekly basis. Water samples were also collected on synoptic surveys of the adit between the portal and the main source of flow in the flooded workings. Total concentrations of As in the mildly alkaline (pH = 8.7) portal drainage average 3034 μg/L whereas at the source they average 5898 μg/L. As emergent waters from the flooded workings flow toward the portal, their dissolved oxygen content and pH increase from 0 to 10 mg/L and from 7.7 to 9, respectively. Near the emergence point, dissolved Fe precipitates rapidly, sorbing both As(III) and As(V). With increasing distance from the emergence point, dissolved As(III) concentrations drop to detection limits through sorption on hydrous ferric oxide and through oxidation to As(V). Concentrations of dissolved As(V), on the other hand, increase and stabilize, reflecting lower sorption at higher pH and the lack of available sorbent. Nonetheless, based on synoptic surveys, approximately 35% of the source As load is sequestered in the adit resulting in As sediment concentrations averaging 8.5 wt%. The remaining average As load of 1.34 kg/d is discharged from the portal. Partitioning of As(V) between dissolved and particulate phases in portal effluent is characterized by a sorption density of 0.37 mol As (mol Fe)−1 and by a distribution coefficient (Kd) of 130 L/g HFO. The relatively high sorption density may reflect co-precipitation of As with Fe oxyhydroxides rather than a purely adsorption-controlled process. Results of this study show that the As self-mitigating capacity of drainage from orogenic lode gold deposits may be poor in high-pH and Fe-limited settings.  相似文献   

11.
Active and abandoned mine activities constitute the sources of deterioration of water and soil quality in many parts of the world, particularly in the African Copperbelt regions. The accumulation in soils and the release of toxic substances into the aquatic ecosystem can lead to water resources pollution and may place aquatic organisms and human health at risk. In this study, the impact of past mining activity (i.e., abandoned mine) on aquatic ecosystems has been studied using ICP-MS analysis for trace metals and Rare Earth Elements (REE) in sediment samples from Lubumbashi River (RL) and Tshamilemba Canal (CT), Katanga, Democratic Republic of the Congo (DRC). Soil samples from surrounding CT were collected to evaluate trace metal and REE concentrations and their spatial distribution. The extent of trace metal contamination compared to the background area was assessed by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Additionally, the trace metal concentrations probable effect levels (PELs) for their potential environmental impact was achieved by comparing the trace metal concentrations in the sediment/soil samples with the Sediment Quality Guidelines (SQGs). Spearman's Rank-order correlation was used to identify the source and origin of contaminants. The results highlighted high concentrations of trace metals in surface sediments of CT reaching the values of 40152, 15586, 610, 10322, 60704 and 15152 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. In the RL, the concentrations reached the values of 24093, 2046, 5463, 3340, 68290 and 769 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. The ΣREE varied from 66 to 218 and 142–331 mg kg−1 for CT and RL, respectively. The soil samples are characterized by variable levels of trace metals. The EF analysis showed “extremely severe enrichment” for Cu and Co. However, no enrichment was observed for REE. Except for Mo, Th, U, Eu, Mo, Ho and Tm for which Igeo is classified as “moderately polluted and/or unpolluted”, all elements in different sites are classified in the class 6, “extremely polluted”. The trace metal concentrations in all sampling sites largely exceeded the SQGs and the PELs for the Protection of Aquatic Life recommendation. Cu and Co had positive correlation coefficient values (r = 0.741, P < 0.05, n = 14). This research presents useful tools for the evaluation of water contamination in abandoned and active mining areas.  相似文献   

12.
Deccan Traps spread over large parts of south, west and central India, possibly hiding underneath sediments with hydrocarbon potential. Here, we present the results of seismic refraction and wide-angle reflection experiments along three profiles, and analyze them together the results from all other refraction profiles executed earlier in the western part of Narmada–Tapti region of the Deccan Volcanic Province (DVP). We employ travel time modelling to derive the granitic basement configuration, including the overlying Trap and sub-trappean sediment thickness, if any. Travel time skips and amplitude decay in the first arrival refraction data are indicative of the presence of low velocity sediments (Mesozoic), which are the low velocity zones (LVZ) underneath the Traps. Reflection data from the top of LVZ and basement along with the basement refraction data have been used to derive the Mesozoic sediment thickness.In the middle and eastern parts of the study region between Narmada and Tapti, the Mesozoic sediment thickness varies between 0.5 and 2.0 km and reaches more than 2.5 km south of Sendhwa between Narmada and Tapti Rivers. Thick Mesozoic sediments in the eastern parts are also accompanied by thick Traps. The Mesozoic sediments along the present three profiles may not be much prospective in terms of its thickness, except inside the Cambay basin, where the subtrappean sediment thickness is about 1000–1500 m. In the eastern part of the study area, the deepest section (>4 km) has thick (∼2 km) Mesozoic sediments, but with almost equally thick Deccan Trap cover. Results of the present study provide important inputs for future planning for hydrocarbon exploration in this region.  相似文献   

13.
Arsenic species including arsenite, arsenate, and organic arsenic were measured in the porewaters collected from Poyang Lake, the largest freshwater lake of China. The vertical distributions of dissolved arsenic species and some diagenetic constituents [Fe(II), Mn(II), S(−II)] were also obtained in the same porewater samples in summer and winter. In sediments the concentration profiles of total As and As species bound to Fe–Mn oxyhydroxides and to organic matter were also determined along with the concentrations of Fe, Mn and S in different extractable fractions. Results indicate that, in the summer season, the concentrations of total dissolved As varying from 3.9 to 55.8 μg/L in sediments were higher than those (5.3–15.7 μg/L) measured in the winter season, while the concentrations of total As species in the solid phase varied between 10.97 and 25.32 mg/kg and between 7.84 and 30.52 mg/kg on a dry weight basis in summer and winter, respectively. Seasonal profiles of dissolved As suggest downward and upward diffusion, and the flux of dissolved As across the sediment–water interface (SWI) in summer and winter were estimated at 3.88 mg/m2 a and 0.79 mg/m2 a, respectively. Based on porewater profiles and sediment phase data, the main geochemical behavior of As was controlled by adsorption/desorption, precipitation and molecular diffusion. The solubility and migration of inorganic As are controlled by Fe–Mn oxyhydroxides in summer whereas they appear to be more likely controlled by both amorphous Fe–Mn oxyhydroxides and sulfides in winter. A better knowledge of the cycle of As in Poyang Lake is essential to a better management of its hydrology and for the environmental protection of biota in the lake.  相似文献   

14.
In the present study, we investigated As behavior in a high-As hot spring (Sambe hot spring, Shimane, Japan) by coupling direct chemical speciation by synchrotron-based XAFS and HPLC–ICP-MS with microbial As-redox transformation gene analysis. The concentration of soluble As in the spring streamwater decreased immediately along the flow in correlation with Fe behavior, indicating that As in the streamwater was naturally attenuated in the streamwater. Iron XAFS analysis suggested deposition of Fe(III) oxyhydroxides along the flow. Thus, considering the strong affinity of As to Fe oxyhydroxides, the observed attenuation in As was possibly caused by sorption (or incorporation) of As on Fe(III) oxyhydroxides. Both dissolved As(III) and As(V) were present in the aqueous phase, and As(III) was rapidly oxidized to As(V) (<30 s) along the flow. The oxidation kinetics indicated the occurrence of biotic As(III) oxidation, because obtained As(III) oxidation rate (6.7–7.8 μM min−1) was much faster than the reported abiotic oxidation rates. Furthermore, the bacterial arsenite oxidase gene (aioA) was detected in DNA extracted from all samples (average of 2.0 × 105 copies dry g−1), which also supported potential attributes of biological As(III) oxidation in situ. In solid phase samples from sampling points analyzed by XAFS, most of the As existed as oxidized pentavalent form, As(V). This result indicated that this form was preferentially partitioned to the solid phase because of the much higher affinity of As(V) than of As(III) to Fe(III) oxyhydroxides. Considering the kinetic and microbiological findings, it is indicated that biotic process was predominantly responsible for As(III) oxidation at the present site, and this biotic As(III) oxidation to As(V) controlled the observed attenuation of As, because oxidized As(V) was removed from the aqueous phase by Fe(III) oxyhydroxides more efficiently.  相似文献   

15.
We analyzed major and trace elements, Sr and Nd isotopes in ultramafic xenoliths in Miocenic age Hyblean diatremes, along with noble gases of CO2-rich fluid inclusions hosted in the same products. The xenoliths consist of peridotites and pyroxenites, which are considered to be derived from the upper mantle. Although the mineral assemblage of peridotites and their whole-rock abundance of major elements (e.g., Al2O3 = 0.8–1.5 wt.%, TiO2 = 0.03–0.08 wt.%) suggest a residual character of the mantle, a moderate enrichment in some incompatible elements (e.g., LaN/YbN = 9–14) highlights the presence of cryptic metasomatic events. In this context a deep silicate liquid is considered the metasomatizing agent, which is consistent with the occurrence of pyroxenites as veins in peridotites. Both the Zr/Nb and 143Nd/144Nd ratios of the investigated samples reveal two distinct compositional groups: (1) peridotites with Zr/Nb  4 and 143Nd/144Nd  0.5129, and (2) pyroxenites with Zr/Nb  20 and 143Nd/144Nd  0.5130. The results of noble-gas analyses also highlight the difference between the peridotite and pyroxenite domains. Indeed, the 3He/4He and 4He/40Ar* ratios measured in the fluid inclusions of peridotites (respectively 7.0–7.4 ± 0.1 Ra and 0.5–8.2, where Ra is the atmospheric 3He/4He ratio of 1.38 × 10? 6) were on average lower than those for the pyroxenites (respectively 7.2–7.6 Ra and 0.62–15). This mantle heterogeneity is interpreted as resulting from a mixing between two end-members: (1) a peridotitic layer with 3He/4He  7 Ra and 4He/40Ar*  0.4, which is lower than the typical mantle ratio (~ 1–4) probably due to melt extraction events, and (2) metasomatizing mafic silicate melts that gave rise to pyroxenites characterized by 3He/4He  7.6 Ra, with a variable 4He/40Ar* due to degassing processes connected with the ascent of magma at different levels in the peridotite wall rock. The complete geochemical data set also suggests two distinct mantle sources for the xenolithic groups highlighted above: (1) a HIMU (high-μ)-type source for the peridotites and (2) a DM (depleted mantle)-type source for the pyroxenites.  相似文献   

16.
《Applied Geochemistry》2005,20(5):973-987
Due to liming of acid mine drainage, a calcite–gypsum sludge with high concentrations of Zn (24,400 ± 6900 μg g−1), Cu (2840 ± 680 μg g−1) and Cd (59 ± 20 μg g−1) has formed in a flooded tailings impoundment at the Kristineberg mine site. The potential metal release from the sludge during resuspension events and in a long-term perspective was investigated by performing a shake flask test and sequential extraction of the sludge. The sequentially extracted carbonate and oxide fractions together contained ⩾97% of the total amount of Cd, Co, Cu, Ni, Pb and Zn in the sludge. The association of these metals with carbonates and oxides appears to result from sorption and/or coprecipitation reactions at the surfaces of calcite and Fe, Al and Mn oxyhydroxides forming in the impoundment. If stream water is diverted into the flooded impoundment, dissolution of calcite, gypsum and presumably also Al oxyhydroxides can be expected during resuspension events. In the shake flask test (performed at a pH of 7–9), remobilisation of Zn, Cu, Cd and Co from the sludge resulted in dissolved concentrations of these metals that were significantly lower than those predicted to result from dissolution of the carbonate fraction of the sludge. This may suggest that cationic Zn, Cu, Cd and Co remobilised from dissolving calcite, gypsum and Al oxyhydroxides were readsorbed onto Fe oxyhydroxides remaining stable under oxic conditions. In a long-term perspective (≳102 a), ⩾97% of the Cd, Co, Cu, Ni, Pb and Zn content of the sludge potentially is available for release by dissolution of calcite and reductive dissolution of Fe oxyhydroxides if the sludge is subject to a soil environment with lower dissolved Ca concentrations, pH and redox than in the impoundment.  相似文献   

17.
Mercury concentrations were determined in stream sediments from the Camaquã River Basin, located in the shield region of the state of Rio Grande do Sul, southern Brazil. The resulting geochemical data show that overbank floodplain deposits exhibit higher concentrations than sediments collected from the active channel bed. In addition, higher Hg concentrations were measured in the fine(<63 μm) sediment fraction of the samples. Total Hg concentrations in the fine fraction of active stream sediments from Lavras do Sul County, which have been influenced by past gold mining activities, have decreased during the last five years to values ≤142 ng g−1. However, in a settling pond containing abandoned mine wastes, the Hg concentration of a bulk sample remained exceptionally high (5220 ng g−1). Preliminary speciation results show that Hg0 is the predominant species in most of the samples. This was the form of Hg released by the gold amalgamation activities in the area, and appears to be relatively stable under the existing Eh and pH conditions.  相似文献   

18.
《Chemical Geology》2007,236(3-4):217-227
The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfide experiments yield pyrite with trace amounts of mackinawite. With increasing initially added As(V) concentrations the transformation of FeS to mackinawite and pyrite is retarded. At S:As = 1:1 and 2:1, elemental sulfur and green rust are the end products. As(V) oxidizes S(-II) in FeS and (or) in solution to S(0), and Fe(II) in the solid phase to Fe(III). Increasing initially added As(III) concentrations inhibit the transformation of FeS to mackinawite and pyrite and no oxidation products of FeS or sulfide, other than pyrite, were observed. At low arsenic concentrations, sorption onto the FeS surface may be the reaction controlling the uptake of arsenic into the solid phase. Inhibition of iron(II) sulfide transformations due to arsenic sorption suggests that the sorption sites are crucial not only as sorption sites, but also in iron(II) sulfide transformation mechanisms.  相似文献   

19.
Sediments of a thermokarst system on the north-eastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment related to climatic changes since the early Holocene. The thermokarst pond with a length of 360 m is situated in a 14.5 × 6 km tectonically unaffected intermontane basin, which is underlain by discontinuous permafrost.A lake sediment core and bankside lacustrine onshore deposits were analysed. Additionally, fossil lake sediments were investigated, which document a former lake-level high stand. The sediments are mainly composed of marls with variable amounts of silt carbonate micrite, and organic matter.On the basis of sedimentological (grain size data), geochemical (XRF), mineralogical (XRD) and micropaleontological data (ostracods and chironomide assemblages) a reconstruction of a paleolake environment was achieved.Lacustrine sediments with endogenic carbonate precipitation suggest a lacustrine environment since at least 19.0 cal ka BP. However, because of relocation and reworking processes in the lake, the sediments did not provide distinct information about the ultimate formation of the lake. The high amount of endogenic carbonate suggests prolonged still-water conditions at about 9.3 cal ka BP. Ostracod shells and chironomid head capsules in fossil lake sediments indicate at least one former lake-level high stand, which were developed between the early and middle Holocene. From the late Holocene the area was possibly characterized by a lake-level decline, documented by a hiatus between lacustrine sediments and a reworked loess or loess-like horizon. After the lake-level decline and the following warming period, the area was affected by thermally-induced subsidence and a re-flooding of the basin because of thawing permafrost.  相似文献   

20.
The sources and historical deposition of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in dated sediment cores from the Pichavaram mangrove–estuarine complex. The ΣPAH flux in mangrove and estuarine sediments was 0.064 ± 0.031 μg/cm2/yr and 0.043 ± 0.020 μg/cm2/yr, respectively. The PAH flux in sediments increased up-core, coinciding with rapid urbanization since the 1970s. The flux showed a decrease in recent years (since 1990), coinciding with less riverine discharge, and perhaps more effective implementation of environmental regulations. The sediments were dominated by low molecular weight PAHs, suggesting anthropogenic input. Ratios of specific PAH isomer pairs suggested a greater input of petrogenic vs. pyrogenic derived PAHs. Notably, the deposition of high molecular weight PAHs increase in mangrove surface sediments was due to lignite and firewood combustion. Because of their overall low concentration in sediments it is unlikely these PAHs pose an immediate ecological hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号