首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The force-free electromagnetic field represents a natural generalization of the well-known force-free magnetic field model and allows the magnetic field to maintain electric charge separation.The basic equation for the cylindrical oscillations of the force-free electromagnetic field is obtained and solved for a linear case. The spectrum of possible resonances in a magnetized atmosphere is discussed.  相似文献   

2.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

3.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The physical conditions needed for the development of field-aligned force-free current in astrophysical circumstances are considered. It is shown that a large-scale differential motion of magnetic regions can lead to the development of magnetic field with the preferential enhancement of force-free current. Other physical consequences of force-free current in evolving magnetic field are also discussed.  相似文献   

5.
The behavior of adiabatically slow deformations of the force-free field is investigated. Using the linear approximation it is shown that for a rather wide class of boundary perturbations of one-dimensional force-free field there appear singular magnetic force lines or surfaces. Hence the problem of quasi-steady deformation of frozen-in magnetic field has no solution. Relating to the problem of magnetic field in the solar corona it means that there will appear discontinuities (current sheets), when the magnetic field is deformed, for example, due to photospheric motion.  相似文献   

6.
Recent numerical magnetohydrodynamic calculations by Braithwaite and collaborators support the 'fossil field' hypothesis regarding the origin of magnetic fields in compact stars and suggest that the resistive evolution of the fossil field can explain the reorganization and decay of magnetar magnetic fields. Here, these findings are modelled analytically by allowing the stellar magnetic field to relax through a quasi-static sequence of non-axisymmetric, force-free states, by analogy with spheromak relaxation experiments, starting from a random field. Under the hypothesis that the force-free modes approach energy equipartition in the absence of resistivity, the output of the numerical calculations is semiquantitatively recovered: the field settles down to a linked poloidal–toroidal configuration, which inflates and becomes more toroidal as time passes. A qualitatively similar (but not identical) end state is reached if the magnetic field evolves by exchanging helicity between small and large scales according to an α-dynamo-like, mean-field mechanism, arising from the fluctuating electromotive force produced by the initial random field. The impossibility of matching a force-free internal field to a potential exterior field is discussed in the magnetar context.  相似文献   

7.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

8.
The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semianalytic and numeric equilibria and applied to vector magnetograms from Hinode and ground-based observations. Recently we implemented a new version which takes into account measurement errors in photospheric vector magnetograms. Photospheric field measurements are often affected by measurement errors and finite nonmagnetic forces inconsistent for use as a boundary for a force-free field in the corona. To deal with these uncertainties, we developed two improvements: i) preprocessing of the surface measurements to make them compatible with a force-free field, and ii) new code which keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which must be optimized for use with data from SDO/HMI. In this work we describe the corresponding analysis method and evaluate the force-free equilibria by how well force-freeness and solenoidal conditions are fulfilled, by the angle between magnetic field and electric current, and by comparing projections of magnetic field lines with coronal images from the Atmospheric Imaging Assembly (SDO/AIA). We also compute the available free magnetic energy and discuss the potential influence of control parameters.  相似文献   

9.
本文按常α无力场模型计算了1980年10月23日Boulder 2744活动区前导黑子的纵向磁场随高度的变化,并与用CIV 1548谱线观测得到的色球一日冕过渡区的磁场资料相结合,求得CIV 1548发射区的有效高度。这些结果与文献[4]中对同一黑子用势场模型推求的结果有很大差别。从而表明,势场和无力场在某些方面导致的结果是极不相同的。鉴于观测已表明活动区上空存在电流的事实,在活动区磁场的模拟中,特别是在强扭曲活动区磁场的计算中,应当避免采用势场,而尽可能采用无力场模型。  相似文献   

10.
We calculate the mass-radius relationship of quark stars with the magnetized densitydependent quark mass model in this work, considering two magnetic field geometries: a statistically isotropic, tangled field and a force-free configuration. In both cases, magnetic field production decreases in the case of maximum quark star mass. Furthermore, a tangled, isotropic magnetic field has a relatively smaller impact on the mass and radius, compared to the force-free configuration, which implies that the geometry of the interior magnetic field is at least as important as the field strength itself when the influence of the strong magnetic field on the mass and radius is assessed.  相似文献   

11.
Wiegelmann  T.  Neukirch  T. 《Solar physics》2002,208(2):233-251
We present a method to include stereoscopic information about the three-dimensional structure of flux tubes into the reconstruction of the coronal magnetic field. Due to the low plasma beta in the corona we can assume a force-free magnetic field, with the current density parallel to the magnetic field lines. Here we use linear force-free fields for simplicity. The method uses the line-of-sight magnetic field on the photosphere as observational input. The value of is determined iteratively by comparing the reconstructed magnetic field with the observed structures. The final configuration is the optimal linear force-free solution constrained by both the photospheric magnetogram and the observed plasma structures. As an example we apply our method to SOHO MDI/EIT data of an active region. In the future it is planned to apply the method to analyse data from the SECCHI instrument aboard the STEREO mission.  相似文献   

12.
Hudson  T.S.  Wheatland  M.S. 《Solar physics》1999,186(1-2):301-310
The potential and linear force-free field models for the magnetic field in the solar corona are often used in the analysis of flares. The field is calculated using boundary values measured in the low solar atmosphere. The topology of the field calculated using these models is then compared to the position of flare emissions. We demonstrate that the topology of the field according to each of these models, with the same boundary conditions in place, is not in general even qualitatively equivalent. An argument is given for a similar discrepancy between a linear force-free field solution and a nonlinear force-free field solution.  相似文献   

13.
We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.  相似文献   

14.
Yan  Yihua  Sakurai  Takashi 《Solar physics》2000,195(1):89-109
A boundary integral equation to describe a force-free magnetic field with finite energy content in the open space above the solar surface is found. This is a new representation for a 3-D nonlinear force-free field in terms of the boundary field and its normal gradient at the boundary. Therefore the magnetic field observed on the solar surface can be incorporated into the formulation directly and a standard numerical technique, the boundary element method, can be applied to solve the field. A numerical test case demonstrates the power of the method by recovering the analytical solution to the desired accuracy and its application to practical solar magnetic field problems is straightforward and promising.  相似文献   

15.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

16.
Magnetic Energy of Force-Free Fields with Detached Field Lines   总被引:2,自引:0,他引:2  
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be sosmall (β= 10^-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magneticenergy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magneticenergy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of thecorresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as towhether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed tobe detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.  相似文献   

17.
Wiegelmann  T. 《Solar physics》2004,219(1):87-108
We developed a code for the reconstruction of nonlinear force-free and non-force-free coronal magnetic fields. The 3D magnetic field is computed numerically with the help of an optimization principle. The force-free and non-force-free codes are compiled in one program. The force-free approach needs photospheric vector magnetograms as input. The non-force-free code additionally requires the line-of-sight integrated coronal density distribution in combination with a tomographic inversion code. Previously the optimization approach has been used to compute magnetic fields using all six boundaries of a computational box. Here we extend this method and show how the coronal magnetic field can be reconstructed only from the bottom boundary, where the boundary conditions are measured with vector magnetographs. The program is planed for use within the Stereo mission.  相似文献   

18.
B. C. Low 《Solar physics》1982,77(1-2):43-61
This paper presents a new class of exact solutions describing the non-linear force-free field above a spatially localized photospheric bipolar magnetic region. An essential feature is the variation in all three Cartesian directions and this could not be modelled adequately with previously known symmetric force-free fields. Sequences of force-free fields are constructed and analyzed to simulate the slow growth of a pair of spots on the photosphere. The axis connecting the spots executes rotational motion, distorting the photospheric neutral line separating fluxes of opposite signs. We show directly from the analytic solutions that the resulting reversal of the positions of the spots relative to the background field is associated with (i) the creation of magnetic free energy, (ii) the severe shearing of localized low-lying loops in the vicinity where the photospheric transverse field aligns with the photospheric neutral line, and (iii) the emergence and disappearance of flux from the photosphere at these highly stressed regions. The model relates theoretically for the first time these different magnetic field features that have been suggested by observation and theoretical considerations to be flare precursors. A general formula, based on the virial theorem, is also given for the free energy of a force-free field, strictly in terms of the field value at the photosphere. This formula has obvious practical application.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
This paper treats the prominence model of Low (1993) to examine more complicated sheet currents than those used in the original model. Nonlinear force-free field solutions, in Cartesian coordinates, invariant in a given direction, are presented to show the possibility of an inverse-polarity prominence embedded in a large twisted flux tube. The force-free solution is matched to an external, unsheared, potential coronal magnetic field. These new solutions are mathematically interesting and allow an investigation of different profiles of the current intensity, magnetic field vector and mass density in the sheet. These prominence models show a general increase in magnetic field strength with height in agreement with observations. Other prominence properties are shown to match the observed values.  相似文献   

20.
Quantitative data on the magnetic field structure at all levels of the solar atmosphere are of basic importance for our understanding of physical processes in active regions in general and in flares in particular. Because photospheric longitudinal magnetograms are the most reliable data available, one has to look for a method of theoretical extrapolation of such data to higher levels. Such a method has been developed for force-free magnetic fields, i.e., ∇ X B = αB , with α = constant, satisfying more realistic boundary conditions as compared with earlier papers; e.g., the net magneitic flux through the magnetogram area is not required to be zero. The method has been used to calculate the magnetic field vector and lines of force in the flare-active region of August 1972. Calculated fields are compared with other observations such as structures in H α . Results of August 3rd show that the loop prominence systems observed during the flares of August 2nd and 4th are represented by a force-free field with positive α rather than by a current-free field ( α = 0) The extractable energy supply of this force-free field is of the order of magnitude of maximum flare demand (1032 erg); the height dependence of the magnetic field strengths agrees with that from radio and X-ray estimates. Similar results are obtained for the August 7th magnetic field structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号