首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the retention of Ca and other metals (Pb, Cu, Fe, Zn and Mn) in the Oostriku peat bog (central Estonia) was modelled. Equilibrium sorption of metals on amorphous ferric oxyhydroxide and solid organic matter was simulated at steady-state. Ferric oxyhydroxide formation and possible precipitation of other metals (Mn, Pb and Cu) in the peat was also assessed. Evolution of metal sorption fronts along a peat profile over time was simulated with a dynamic model to test if metal–metal competition effects could cause Pb and Cu to sorb at higher amounts in the uppermost peat than in the lower peat, as observed in the field. The predicted sorbed amounts of metals were compared with those previously observed in the peat. In general, good agreement between both batch and dynamic model results and the independent observations at the Oostriku peat site was obtained. This suggests that the relatively simple model approach employed here might be generally useful for assessing other peat sites and similar applications.  相似文献   

2.
Surface water samples from the Drake mining area show elevated metal concentrations, notably cadmium, iron and zinc. A detailed study of a sphalerite /quartz vein from Strauss Pit and chalcopyrite and pyrite from the Adeline mine and Strauss Pit indicate that micro-scale analyses of ores are necessary for environmental management of mine sites. Analyses show that Cd is elevated, up to 2.1 % by weight, and is associated with sphalerite, replacing Zn, or to a lesser extent replacing Pb within small galena grains. High concentrations of Cu are also associated with the Strauss Pit ore as small chalcopyrite grains along the margins of the sphalerite vein, within the central quartz zone of the vein system, and as replacement rims on sphalerite grains. Chalcopyrite from the Adeline mine area, is by comparison, metal poor, but still contains elevated heavy metal concentrations. Whereas, pyrite and chalcopyrite, from Strauss Pit have variable heavy metal concentrations, with chalcopyrite from within sphalerite veins having higher Cd and Zn concentrations than chalcopyrite distal to the veins. Cadmium and other heavy metals within the ores are mobilised during sulphide weathering and enter the drainage network; precipitation of secondary oxidation minerals act as temporary stores for many heavy metals. The complexity of the mineral and heavy metal associations at Strauss Pit suggest that a detailed knowledge of these associations and distributions within ore bodies, and associated waste rocks, are needed by environmental managers of mine sites because the presence of havy metals may greatly affect the decision making process, and management strategies employed. Received; 14 July 1999 · Accepted: 17 August 1999  相似文献   

3.
Weathering of Hitura (W Finland) nickel sulphide mine tailings and release of heavy metals into pore water was studied with mineralogical (optical and electron microscopy, X-ray diffraction) and geochemical methods (selective extractions). Tailings were composed largely of serpentine, micas and amphiboles with only minor carbonates and sulphides. Sulphides, especially pyrrhotite, have oxidized intensively in the shallow tailings in 10–15 years, but a majority of the tailings have remained unchanged. Oxidation has resulted in depletion of carbonates, slightly decreased pH, and heavy metal (Ni, Zn) release in pore water as well as in the precipitation of secondary Fe precipitates. Nevertheless, in the middle of the tailings area, where the oxidation front moves primarily downward, released heavy metals have been adsorbed and immobilized with these precipitates deeper in the oxidation zone. In contrast to what was seen in pore water pH, but in accordance with static tests of the previous studies, the neutralisation potential ratio (NPR) calculated based on the mineralogical composition and the total sulphur content suggested that tailings are ‘not potentially acid mine drainage (AMD) generating’. However, the calculated buffering capacity of the tailings resulted largely from the abundant serpentine because of the low carbonate content. Despite its slow weathering rate, serpentine may buffer the acidity to some extent through ion exchange processes in fine ground tailings. Nevertheless, in practice, acid production capacity of the tailings depends primarily on the balance between Ca–Mg carbonates and iron sulphides. NPR calculation based on carbonate and sulphur contents suggested, that the Hitura tailings are ‘likely AMD generating’. The study shows that sulphide oxidation can be significant in mobilisation of heavy metals even in apparently non-acid producing, low sulphide tailings. Therefore, prevention of oxygen diffusion into tailings is also essential in this type of sulphide tailings.  相似文献   

4.
太湖MS岩芯重金属元素地球化学形态研究   总被引:21,自引:4,他引:17  
采用BCR三步提取法对太湖MS岩芯沉积物中Cu、Fe、Mn、Ni、Pb和Zn等6种重金属元素的化学形态进行了研究.结果表明,有效结合态的Cu、Ni和Pb主要以有机物及硫化物结合态、Fe-Mn氧化物结合态存在,Fe和Zn主要以Fe-Mn氧化物结合态存在,Mn主要以可交换态及碳酸盐结合态存在;Fe-Mn氧化物结合态的Ni、Pb和Zn与可还原态的Mn有较好的正相关关系,有机物及硫化物结合态的Cu、Mn、Ni、Pb和Zn与有机碳含量有较好的正相关关系;重金属形态分布体现了重金属元素地球化学性质的差异,以及重金属形态含量与沉积物理化性质的关系.沉积岩芯重金属元素形态垂向变化规律及次生相富集系数表明,Cu、Mn、Ni、Pb和Zn在沉积岩芯13~4 cm有效结合态含量较稳定,为自然沉积;4~0 cm有效结合态含量明显升高,存在一定程度的人为污染.根据137Cs测年结果判断,沉积岩芯Cu、Mn、Ni、Pb和Zn等重金属污染开始于20世纪70年代末期,主要污染元素及污染历史与太湖流域污染工业类型及经济发展阶段相吻合.  相似文献   

5.
长沙、株洲、湘潭三市土壤中重金属元素的来源   总被引:13,自引:0,他引:13  
为追踪长沙、株洲、湘潭3个城市表层土壤中Cd、As、Pb等重金属元素的来源,分析了土壤、基岩、大气干湿沉降、水、悬浮物等介质之间重金属元素的质量平衡和土壤自身重金属元素含量随时间变化的特点。结果显示,除As外,区内基岩中的重金属元素含量低于克拉克值;残积物中Cd相对基岩贫化,As、Pb、Cu、Hg等重金属元素相对基岩的富集小于3倍;大气干湿沉降重金属元素相对土壤富集了数倍至数十倍;湘江水体主要向沿江潮土提供As、Cd物源:近50年内土壤重金属元素有较高的增加速率。不同介质间重金属元素的质量变化特点支持长沙、株洲、湘潭三市土壤重金属元素富集的主要物源为大气沉降,地表水及悬浮物是沿江湖土重金属元素的主要物源,基岩对土壤提供的物源有限的结论。  相似文献   

6.
 The oxidation and the subsequent dissolution of sulfide minerals within the Copper Cliff tailings area have led to the release of heavy metals such as Fe, Ni, and Co to the tailings pore water. Dissolved concentrations in excess of 10 g/l Fe and 2.2 g/l Ni have been detected within the shallow pore water of the tailings, with increasing depth these concentrations decrease to or near analytical detection limits. Geochemical modelling of the pore-water chemistry suggests that pH-buffering reactions are occurring within the shallow oxidized zones, and that secondary phases are precipitating at or near the underlying hardpan and transition zones. Mineralogical study of the tailings confirmed the presence of goethite, jarosite, gypsum, native sulfur, and a vermiculite-type clay mineral. Goethite, jarosite, and native sulfur form alteration rims and pseudo-morphs of the sulfide minerals. Interstitial cements, composed of goethite, jarosite, and gypsum, locally bind the tailings particles, forming hardpan layers. Microprobe analyses of the goethite indicate that it contains up to 0.6 weight % Ni, suggesting that the goethite is a repository for Ni. Other sinks detected for heavy metals include jarosite and a vemiculite-type clay mineral which locally contains up to 1.6 weight % Ni. To estimate the mass and distribution of heavy metals associated with the secondary phases within the shallow tailings, a series of chemical extractions was completed. The experimental design permitted four fractions of the tailings to be evaluated independently. These four fractions consisted of a water-soluble, an acid-leachable, and a reducible fraction, as well as the whole-rock total. Twenty-five percent of the total mass of heavy metals was removed in the acid-leaching experiments, and 100% of the same components were removed in the reduction experiments. The data suggest that precipitation/coprecipitation reactions are providing an effective sink for most of the heavy metals released by sulfide mineral oxidation. In light of these results, potential decommissioning strategies should be evaluated with the recognition that changing the geochemical conditions may alter the stability of the secondary phases within the shallow tailings. Received: 9 April 1997 · Accepted: 21 July 1997  相似文献   

7.
采用原子吸收分光光度计法对陕北榆林地区的孟家湾、河湾、尔林兔3个地区泥炭中的重金属元素进行了分析,并根据Hakanson提出的潜在生态危害指数法对其潜在生态危害性进行了评价。结果表明:Cd元素的含量超过土壤背景值,Cu、Pb、Cr、Mn 4个元素的含量均低于土壤背景值;重金属元素的生态危害指数除Cd较高,属极高水平外,Cu、Pb、Cr、Mn均较低。这3个地区泥炭中的重金属元素生态危害程度为中等以上,且尔林兔>河湾>孟家湾。   相似文献   

8.
Water is one of the basic and fundamental requirements for the survival of human beings. Mining of the sulphide mines usually produce a significant amount of acid mine drainage (AMD) contributing to huge amounts of chemical components and heavy metals in the receiving waters. Prediction of the heavy metals in the AMD is important in developing any appropriate remediation strategy. This paper attempts to predict heavy metals (Cu, Fe, Mn, Zn) from the AMD using backpropagation neural network (BPNN), general regression neural network (GRNN) and multiple linear regression (MLR), by taking pH, sulphate (SO4) and magnesium (Mg) concentrations in the AMD into account in Shur River, Sarcheshmeh porphyry copper deposit, southeast Iran. The comparison between the predicted concentrations and the measured data resulted in the correlation coefficients, R, 0.92, 0.22, 0.92 and 0.92 for Cu, Fe, Mn and Zn ions using BPNN method. Moreover, the R values were 0.89, 0.37, 0.9 and 0.91 for Cu, Fe, Mn, and Zn taking the GRNN method into consideration. However, the correlation coefficients were low for the results predicted by MLR method (0.83, 0.14, 0.9 and 0.85 for Cu, Fe, Mn and Zn ions, respectively). The results further indicate that the ANN can be used as a viable method to rapidly and cost-effectively predict heavy metals in the AMD. The results obtained from this paper can be considered as an easy and cost-effective method to monitor groundwater and surface water affected by AMD.  相似文献   

9.
《Applied Geochemistry》2001,16(13):1481-1497
The maximum contents of Pb (360 mg l−1), Zn (360 mg l−1) and Ag (7.9 mg l−1) in formation waters from the Alberta basin were high enough to suggest that it would be of interest to test the concept of recovering these metals by passing natural gas through the water, thereby precipitating the metal sulphides as the result of contact with hydrogen sulphide. The idea was to see if these metals could be recovered from formation water co-produced with crude oil prior to disposal of the water in deep formations, with the possibility of the sale of the metals partially offsetting the cost of disposal. It was proposed to use natural gas with a relatively small amount of hydrogen sulphide (insufficient for sulphur recovery) that must be removed by flaring before the gas is utilized. Accordingly, a database of 694 formation waters with major, minor and trace components was searched for appropriate analyses for detailed study. Of the nine analyses selected the majority were from Devonian and Granite Wash aquifers in the Peace River Arch area of northern Alberta, Canada. Modelling with PATH.ARC showed that there is a consistent set and order of precipitation reactions, in spite of the differences among the formation waters. As would be expected intuitively, acid gas addition makes the formation water more acidic, and metallic sulphide minerals are precipitated. Depending on the initial composition, the end minerals are any of galena, sphalerite, acanthite, covellite and pyrite. These are the minerals that must be beneficiated to recover the metals. A preliminary evaluation of the dollar value of the recovered metals shows that although the absolute values are low, there may be an advantage to recovering the metals if the waters are already being handled at the surface.  相似文献   

10.
滇西沘江流域水体中重金属元素的地球化学特征   总被引:6,自引:1,他引:5  
通过测定流经兰坪金顸铅锌矿区的沘江水体中Pb、Zn、Cd、As的含量和底泥中重金属元素的化学形态的含量,分析了重金属元素的分布和化学形态的变化。结果表明,沘江水遭到了Cd污染,底泥已经成为重金属元素的蓄积库,以国家土壤环境质量标准(Ⅲ级)衡量,Pb、Zn、Cd和舡分别超标3.4倍、15.8倍、106倍和2.6倍。沘江水中重金属元素含量的峰值在矿山附近的下游,而底泥中重金属元素的峰值在矿山下游30-50km的地方,矿业活动、水流变缓、pH等水体环境条件的变化都能影响水和底泥中重金属元素的含量。底泥中的Pb以碳酸盐结合态为主,Zn和Cd以铁锰氧化物结合态为主,而As以残渣态为主。Pb、Cd、Zn三种元素的环境有效态含量比较高,对沘江流域生态环境具有潜在的巨大的危害。  相似文献   

11.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

12.
Core samples were taken at two sites from a peat deposit buried by a sanitary landfill operated by the city of Vancouver since the 1960s and from a third site where the same peat bed is not covered by landfill. Twenty-nine subsamples from the three cores were analyzed by a variety of techniques to determine the concentration of as many as 34 constituents. The content of heavy metals, the principal object of this investigation, is highest in the lower part of the peat succession, in which there is a significant amount of interbedded inorganic sediment, rather than in the upper clean bog peat. Individual layers as little as 2.5 cm thick can hold concentrations of heavy metals ten times that of the nearby layers. The heavy metal contents show a high positive correlation with those of iron and manganese and a very low correlation with sulfur. Iron from the landfill has been transported by downward percolating groundwater in solution or colloidal suspension into the lower layers of peat deposit where the passing heavy metals were sorbed. A comparison of the amounts of heavy metals stored in the peat alone with the amount leaving the whole landfill annually suggests that some metals, notably lead and arsenic, might be retained in the peat for very long periods, whereas other metals such as zinc and mercury might be quickly lost.  相似文献   

13.
The competitive adsorption and the release of selected heavy metals and their speciation distribution before and after adsorption in the Yellow River sediments are discussed. The adsorption of metals onto sediments increases with increasing pH value and decreases with increasing ionic strength. The competitive coefficient K c and the distribution coefficient K d are obtained to analyze the competitive abilities of selected heavy metals, which are ranked as Pb > Cu >> Zn > Cd. The competition among selected heavy metals becomes more impetuous with increasing ion concentration in water. Speciation analysis was done by an improved analytical procedure involving five steps of sequential extraction. Cu, Pb and Zn were mainly transformed into the carbonate-bound form (50.8–87.7%) in adsorption. Most of (60.7–77.3%) Cd was transformed into the exchangeable form, and the percentage of carbonate-bound Cd was 19.7–30.4%. The release reaction was so quick that the release capacity of selected heavy metals from sediments to aqueous solution reached half of the maximum value only in 30 s. As opposed to adsorption, the release capacities of selected heavy metals were ranked as Cd > Zn >> Cu > Pb. In this study, Cd produces the most severe environmental hazards, because its concentration in the release solution is 85.8 times more than the human health criteria of US EPA.  相似文献   

14.
A presentation is made of the study of an underground polymetallic sulphide mine and the pollution caused by this in the adjoining aquatic ecosystems. Troya Mine is in the Basque Cantabrian region (northern Spain). The annual production of the ore deposit of over 3.7 million tons of Pb (0.9%), Zn (11.2%) and Cu (0.2%) was 300,000 t. It was open and producing from 1986-1993. The mineralization was made up of pyrite, marcasite, sphalerite, galena, chalcopyrite and arsenopyrite. Only the Zn and the Pb were mined. We studied the distribution and behaviour of the heavy metals Zn, Pb, Fe, Mn, Cu, Cr and Cd in the water column, dissolved and suspended fractions, and in the sediments of Estanda Stream and of Gezala Creek. Zn, Cd and Mn tend to be found in the water; Fe, Pb, Cu and Cr appear as an adsorbed fractionin the solid phases. Those of the second group are significantly linked to the fluvial sediments and present very high levels. The concentrations of the metals are conditioned by the waters from the mine galleries, by the leached waste, by the surface runoff, and by overflow from the spillway of the tailings pond. Our observations provide knowledge on the extent of the polluting power of the metals, the physico-chemical effects in play and the subsequent chances of recovering these highly affected environments.  相似文献   

15.
重金属污染水的双壳处理法初探   总被引:2,自引:0,他引:2  
根据生物成矿作用原理以及热液生物群与多金属硫化物共生的关系提出了双壳生物治理重金属污染水的可能性.实验模拟结果表明,双壳对某些重金属元素具有很强的富集能力,能够在一定程度上降低环境污染指数,说明双壳处理法治理重金属污染水是可行的,尤其是针对矿山污染水;双壳处理法的实施过程中受重金属离子质量浓度与温度范围的限制,其对不同重金属离子的富集也具有一定的选择性.  相似文献   

16.
广西红水河中下游马山地区地下水重金属含量及分布特征   总被引:2,自引:2,他引:0  
为了解红水河中下游马山地区地下水重金属含量及分布特征,以西南岩溶地下水污染调查评价中广西红水河中下游马山地区地下水数据为基础,对该地区27件样品的重金属含量特征、重金属间相关关系、重金属与其它化学组分的相关性以及地下水重金属分布特征进行了研究。结果表明:研究区地下水中重金属含量整体偏低,平均质量浓度顺序为Fe>(Al)>Zn>Mn>Pb>Se>As>Cd,重金属平均质量浓度均小于中国生活饮用水标准值,且绝大部分重金属含量远远低于该标准值。Mn与Fe、As、Al存在显著或极显著的正相关关系,Zn与Pb、Cd存在明显的相关性,Se与其它7种重金属的相关性均不明显,可能是由于Se与其它重金属的来源差异较大所致。地下水的酸碱性对重金属的富集影响较小,但地下水中主化学成分HCO3-和Ca2+对重金属的富集有较大影响,TDS对绝大部分重金属的影响较小,对As和Cd具有一定的影响。地下水中Mn、Zn、As、Pb、Cd、Se、Al、Fe质量浓度在空间上表现出一定的地区分布特点,整体上重金属高浓度点主要集中在马山县城周围以及古寨、乔利街乡镇周围。   相似文献   

17.
Coastal reclamation has been carried out along the coastal areas near Shenzhen, China in a large scale since 1980s by dumping fill materials over the marine mud at the sea bottom. Usually the area to be reclaimed is drained first and some of the mud is air-dried for a few weeks before it is buried by fill. After reclamation, the terrestrial groundwater, which is relatively acidic and with high dissolved oxygen, gradually displaces the seawater, which is alkaline with high salinity. The changes in the burial conditions of mud and the properties of the pore water in the mud may induce the release of some heavy metals into the mud. Field survey confirms that the pH and salinity of the groundwater in the reclamation site are much lower than the seawater. Chemical analyses of mud and groundwater samples collected from the reclamation sites reclaimed in different years indicate that most of the heavy metals in the mud decrease gradually with time, but the heavy metals in the groundwater are increased. The release of heavy metals into pore water due to reactivation of heavy metals in the mud is of environmental concern. To understand why some of the heavy metals can be released from the mud more easily than others, a sequential extraction method was used to study the operationally determined chemical forms of five heavy metals (Cu, Ni, Pb, Zn, and Cd) in the mud samples. Heavy metals can be presented in five chemical forms: exchangeable, carbonate, Fe–Mn oxide, organic, and residual. Ni and Pb were mainly associated with the Fe–Mn oxide fraction and carbonate fraction; Zn was mainly associated with organic fraction and Fe–Mn oxide fraction, while Cu and Cd were associated with organic fraction and carbonate fraction, respectively. If the residual fraction can be considered as an inert phase of the metal that cannot be mobilized, it is the other four forms of heavy metal that cause the noticeable changes in the concentration of heavy metals in the mud. On the basis of the speciation of heavy metals, the mobility of metals have the following order: Pb (36.63%) > Cu (31.11%) > Zn (20.49%) > Ni (18.37%) > Cd (13.46%). The measured metal mobility fits reasonably well with the degree of concentration reduction of the metals with time of burial observed in the reclamation site.  相似文献   

18.
《Applied Geochemistry》2005,20(2):275-293
The recently developed geochemical modelling code, SULFIDOX, has been applied to simulate weathering of a waste rock dump at the Aitik mine site, Sweden. SULFIDOX models the key chemical and physical processes in the dump temporally and spatially (in two dimensions). The following processes are represented: gas and heat transport; water infiltration; aqueous speciation; mineral dissolution/oxidation and precipitation.Field observations at the site suggest that sulphide oxidation rates within the dump are variable. Although the major part of the dump is oxidising slowly, there are pockets of more highly oxidising material, particularly toward the dump edges. Using SULFIDOX, several models of the dump were investigated: (i) a dump wholly comprised of slowly oxidising material (representing a case where water flow paths are such that no rapidly oxidising regions are accessed); (ii) a dump wholly comprised of the more rapidly oxidising material (representing the opposite (and probably unlikely) extreme, where water flows only through rapidly oxidising regions in the dump); and (iii) a dump comprising a mixture of both slowly and more rapidly oxidising material, that more closely represents the mix of material in the dump.All the models studied gave O2 depth profiles consistent with those observed in probe holes at the site, and confirmed that only a minimal amount of heat production would be expected in the dump due to the role of exothermic sulphide oxidation reactions. The models suggested that a medium-term steady-state, with respect to effluent chemistry, would be achieved after 3–4 years. Based on sulphide consumption rates during this steady-state period, the time periods required to consume all the sulphide in the dump range from a few hundred to many thousands of years. Using the mixed model, and based on a mixture containing 86% slowly and 14% rapidly oxidising material, the calculated effluent chemistry was in good agreement with the observed effluent chemistry. Improvements with respect to the K concentrations were possible by including precipitation of a K-bearing secondary mineral such a K-jarosite in the model. Results from the more rapidly oxidising model suggested that gypsum precipitation might be expected in those regions of the dump containing this material.In summary, the SULFIDOX modelling code has been used successfully to reproduce observed data for the Aitik waste-rock dump. Using SULFIDOX, valuable insight was gained in relation to the temporal and spatial evolution of the dump.  相似文献   

19.
 Leaching of two contrasting types of sulphidic tailings in humidity cells has been performed. The release of heavy metals and the oxidation rate have been studied. Tailings from the Laver mine contain a few percent sulphides and lack carbonates, whereas tailings from the Stekenjokk mine are both sulphide- and carbonate-rich. The results showed that in the leachates from the Laver samples, the metal concentrations increased and pH decreased with time, indicating an increased oxidation rate. In the Stekenjokk samples, pH remained high during the experiment, thereby keeping the metal concentrations low in the leachates. The oxidation rate also decreased with time, probably due to Fe-hydroxide coatings on sulphide surfaces. The results show that addition of carbonates and the maintenance of a high pH not only reduce the solubility of heavy metals, but also decrease the oxidation rate of sulphides. Received: 20 January 1998 · Accepted: 2 April 1998  相似文献   

20.
Distribution of AVS (acid volatile sulfide)-SEM (simultaneously extracted metals), transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in Baotou City were discussed in this work. The results showed that the content of heavy metals in sediments increased due to the water pumped from the Yellow River, domestic sewage, municipal runoff and yacht waste release. Increasing water depth, domestic sewage influx and hydrophyte booming made the AVS level higher in downstream than upstream. The vertical distribution of AVS is characterized as multiple-peak in the sediment cores from the studied lake. Comparatively, the control abilities of the carbonate and sulfate to the heavy metals were five orders of magnitude lower than the sulfide phase. Therefore, AVS was the key factor controlling the precipitation of heavy metals in the Nanhai Lake. The ratio of SEM/AVS in the sediments, the acute sediment quality criteria and the chronic sediment quality criteria indicated that no acute toxicity for benthic organisms can be expected, and the AVS plays an important role in controlling the bioavailability and toxicity of heavy metals in the Nanhai Lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号