首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Long term competent performance of liner systems is a critical issue in the design and construction of waste repositories due to adverse interactions associated with leachate generated by wastes. This study was conducted to verify the efficacy of fly ash stabilization in enhancing compatibility between lateritic soil and municipal waste leachate. Applications investigated include soil mixtures containing 0, 5, 10, 15, and 20% fly ash compacted at approximately 2% wet of optimum moisture content with modified proctor energy. Baseline hydraulic conductivity was first established at every level of fly ash content by permeating soil mixtures with tap water before permeation with leachate in a compaction mould permeameter using the falling head test method. Results show that the trend in hydraulic conductivity of specimen containing 0% fly ash was characterized by a gradual but erratic decrease which may suggests partial entry of the leachate cations into the double layer. Conversely, specimens containing fly ash showed a general trend consisting of an initial drop in k (up to an order of magnitude) that was followed by slight decrease sustained until k stabilized and later terminated. Above 10% fly ash content, the relatively high values of k observed was not connected with the reactivity of the soil mixtures with leachate, rather it may be attributed to excessive fly ash content that altered their textural and hydraulic properties. The result of this study is potentially significant in the assessment of fly ash as a compatibility enhancing agent which can be admixed in barrier materials that are susceptible to adverse reactions with the liquid to be contained.  相似文献   

2.
To study the impact of salt water intrusion on two types of soils from west coast region of India were investigated in the laboratory. The key characteristics evaluated included Atterberg limits, compaction characteristics, hydraulic conductivity and chemical characteristics of selected soils. The sea at this coast receives effluent from different points and hence the characteristics change with time and locality. Therefore, to maintain uniform composition, 0.5 N sodium chloride solution (NaCl) was prepared in the laboratory and batch tests were used to determine the immediate effect on soils. Soil specimens were prepared by mixing the soils with 0.5 N NaCl in the increments of 0, 5, 10 and 20% by weight to vary the degree of contamination. Experimental results of soils mixed with 0.5 N NaCl showed that the maximum dry density increases and the optimum moisture content (OMC) decreases with increasing sodium chloride concentration. The study also revealed that the hydraulic conductivity of the soils tested increases with increase in sodium chloride concentration. The Atterberg limits of contaminated specimens show a remarkable change when compared with uncontaminated specimens.  相似文献   

3.
This study evaluates the applicability of residually derived lateritic soil stabilized with cement kiln dust (CKD), a waste product from the cement manufacturing process as liner in waste repositories. Lateritic soil sample mixed with 0–16 % CKD (by dry weight of the soil) was compacted with the British Standard Light, West African Standard and British Standard Heavy compaction efforts at water contents ranging from the dry to wet of optimum moistures. Geotechnical parameters such as Atterberg limits, compaction characteristics, hydraulic conductivity, unconfined compressive strength and volumetric shrinkage strain were determined. Results indicate that the plasticity index, the maximum dry unit weight and hydraulic conductivity together with the volumetric shrinkage decreased with increased amount of CKD while the optimum moisture content and unconfined compressive strength increased with higher CKD content for all the efforts. When measured properties were compared with standard specifications adopted by most environmental regulatory agencies for the construction of barrier systems in waste containment structures, the resulting values showed substantial compliance. Besides developing an economically sustainable liner material, the present study demonstrated effective utilization of an industrial by-product otherwise considered as waste by the producers, in addition to a systematic expansion in the use of the lateritic soil for geotechnical works.  相似文献   

4.
Lime treatment of loess in foundation engineering modifies the soil structure, leading to changes in mechanical and hydraulic properties of soil, which in turn will affect the flow of water and transport of contaminants in the loess. In light of this, it is essential to identify the dominant effects of different lime treatments on hydraulic conductivity, and to ascertain the optimum lime treatment. For this purpose, we investigated the effects of dry density and lime content on changes in hydraulic conductivity and microstructure of loess in Yan’an City, China. The results indicate that hydraulic conductivity has a log negative correlation with dry density, and lime addition can result in a decrease of hydraulic conductivity of loess at the same dry density. Under a given degree of compaction, however, lime addition can lead to a decrease in dry density due to an increase in flocculation and aggregations. The significant decrease of dry density leads to an increase in hydraulic conductivity when lime content (in mass percentage) is lower than 3%. Nevertheless, when lime content is higher than 3%, the reactions between loess particles and lime will be intensified with an increase in lime content, and become the primary factors affecting pore characteristics. These reactions can further decrease the hydraulic conductivity of lime-treated loess, and the lowest hydraulic conductivity was obtained for lime-treated loess with 9% lime content. The excess lime (above 9% lime content) dramatically increased pore size, leading to a significant increase in hydraulic conductivity. Therefore, 9% is the optimum lime content for loess treatment, and the degree of compaction in engineering should be higher than 95%. In addition, statistical analysis of microstructure of lime-treated loess shows that the distribution trends of macro- and meso-pores coincided with that of saturated hydraulic conductivity, which indicates that lime content affects saturated hydraulic conductivity of lime-treated loess by changing the soil structure, especially the properties of pores larger than 8 µm.  相似文献   

5.
Compacted soilbentonite mixtures are finding wide application as buffer material for waste repositories for their favorable self-sealing qualities. The swelling properties of such materials which serve as a measure of their self-sealing capabilities and, thus, the efficiency of the repository in sealing off their contents from the environment are closely related to the chemistry of the leachate that emanate from the wastes. For this reason, the swelling parameters (namely swelling potential and pressure) of compacted lateritic soil–bentonite mixtures under consideration for use as barrier in municipal waste landfill were evaluated. Series of swelling potential and pressure tests were performed using variable content (0–10 %) of bentonite at predetermined optimum moisture content. Soil mixtures were compacted with British Standard Heavy compactive effort and saturated with processed tap water as well as three leachate solutions of varying ionic strength that were generated in active open dump landfills. Experimental results showed that swelling potential based on the free swell together with the maximum swell pressures of compacted soil mixtures measured at equilibrium increased approximately linearly with increase in the amount of bentonite when inundated with processed tap water and the three leachate solutions. On the other hand, these swelling parameters decreased as the ionic strength of the leachate solutions measured by their electrical conductivity increased for the various soil mixtures. These results provide an insight into the swelling behavior and the possible degradation in the efficiency of the proposed lateritic soil–bentonite mixtures in relation to their use as buffer material in waste landfills.  相似文献   

6.
非饱和土与饱和冻融土导湿系数的变化特征   总被引:2,自引:2,他引:2  
  相似文献   

7.
Number 6 fuel oil is one of the most used energy sources for electricity generation. However, leaks can contaminate soil and also groundwater due to leaching. At old sites, the oil may have low toxicity but still contaminate groundwater with foul-tasting compounds even at low concentrations. The purpose of this study was to evaluate the feasibility of applying H2O2 to reduce the leaching potential of a fuel oil contaminated soil. A silt-loam soil was collected from a contaminated thermal-electric plant with a hydrocarbon concentration of 3.2% in soil producing 4.3 mg/l in leachate. Hydrogen peroxide was applied (0.1, 0.2, 0.3, 0.6, 1.2% dry weight basis), and petroleum hydrocarbons were measured in soil and leachate pre- and post-treatment (72 h). At first, the soil and leachate concentrations diminished linearly (24.4 and 27.3% in soil and leachate, respectively). This was followed by a phase in which the concentration in leachate diminished greatly (75.8%) although the concentration in soil was reduced only moderately (15.1%). Overall, hydrocarbons in leachates were reduced 82.4% even though concentrations in soil were only reduced 35.8%. Correlation analysis showed that at only 1.0% w/w H2O2 a concentration of petroleum hydrocarbons in leachate safe for human consumption (≤ 1 mg/l) could be obtained even with a final hydrocarbon concentration in soil > 2%. Thus, this study presents an alternative strategy for remediation of fuel oil contaminated soils in urban environments that protects water sources by focusing on contamination in leachates, without spending extra financial resources to reduce the hydrocarbon concentration in low-toxicity soil.  相似文献   

8.
Microstructure and hydraulic conductivity of a compacted lime-treated soil   总被引:1,自引:0,他引:1  
Under a given compaction energy and procedure, it is known that maximum dry density of a soil is lowered due to lime addition. This modification of maximum dry density could alter the hydraulic conductivity of the soil. The main object of this study was to assess the impact of lime-stabilization on a silt soil microstructure and then on saturated hydraulic conductivity. An investigation at the microscopic level with mercury intrusion porosimetry showed that lime treatment induced the formation of a new small class, with a diameter lower than 3 × 103 Å in the compacted soil. This class is responsible for the difference in dry density between the treated and the untreated sample after compaction. It is shown that this small pores class was not altered by the compaction water content, the compaction procedure or the dry density. As in untreated soils, only the larger pores were modified by the compaction water content and the compaction procedure in the lime treated samples. The hydraulic conductivity appeared to be only related to the largest pores volume of the tested silt, regardless of lime treatment. Therefore, this study demonstrated that even if addition of lime resulted in a dramatic change of the maximum dry density of the tested silty soil, its effect on hydraulic conductivity is limited.  相似文献   

9.
Earthen barriers or clay liners are a major concern in geo-environmental engineering. They are designed to preclude or reduce leachate migration. Hence, a low hydraulic conductivity (k) is an important parameter in the design of clay liners. Materials such as bentonite and lateritic clays, which have a low hydraulic conductivity at high dry densities, are used in the construction of clay liners. Compacted expansive clays which are high in montmorillonite content also have a very low hydraulic conductivity. When expansive clays are blended with fly ash, an industrial waste, the hydraulic conductivity further reduces as the ash-clay blends result in increased dry densities at increased fly ash contents. Hence, fly ash-stabilised expansive clay can also be proposed as an innovative clay liner material. It is, therefore, required to study various physical and engineering properties of this new clay liner material. Liquid limit (LL) and free swell index (FSI) are important index properties to be studied in the case of this clay liner material. The hydraulic conductivity of this new clay liner material depends on the fly ash content in the blend. Further, parameters such as solute concentration and kinematic viscosity also influence hydraulic conductivity of clay liners. This paper presents experimental results obtained on hydraulic conductivity (k) of fly ash-stabilised expansive clay liner at varying fly ash content and solute concentration. The tests were performed with deionised water (DIW), CaCl2, NaCl and KCl as permeating fluids. Fly ash content in the blend was varied as 0, 10, 20 and 30 % by weight of the expansive clay, and the solute concentration was varied as 5 mM (milli molar), 10, 20, 50, 100 and 500. It was found that hydraulic conductivity (k) decreased with increasing fly ash content, solute concentration and kinematic viscosity. Further, hydraulic conductivity (k) was correlated with LL and FSI of the clay liner material for different fly ash contents and solute concentrations. Useful correlations were obtained.  相似文献   

10.
土中石油污染物具有不稳定性,随环境改变易向周边发生二次迁移,危及周围土体和水体。本文以滨海地区石油污染盐渍土为研究背景,考虑污染强度、石油污染物在土中的存留时间、土体密度为变量参数,探索即时淋滤和过时淋滤条件下土中石油污染物的二维向迁移规律。研究结果表明:即时淋滤条件下,石油污染物强度越大,其在盐渍土中迁移的越深,最大迁移深度为6 cm。干密度(1.2~1.4g ·cm-3)对盐渍土中石油污染物迁移深度的影响较小,但干密度越大,土体对石油污染物的截留能力越强,相同深度处石油污染物的浓度越低。在水平方向,污染强度越大,密度越大,石油污染物在土体中沿半径方向浓度递减幅度越大;过时淋滤条件下,石油污染物在竖直方向的迁移规律与即时条件下相似,但表层盐渍土对石油的截留能力更强,其在盐渍土中迁移的最大深度为4 cm,土体对石油类污染物的最大截留率为99.98%。在水平方向,污染强度越大,密度越小,石油污染物在土体中沿半径方向浓度递减幅度越大;盐渍土对石油污染物具有一定的吸附性,增大密度有利于提高吸附的稳定性。  相似文献   

11.
In this study, an investigation was performed to determine if lime-stabilized sand–bentonite mixtures are appropriate for the construction of sanitary landfills liners. For this aim, the hydraulic conductivity tests were conducted in the laboratory on sand–bentonite mixtures and lime-stabilized sand–bentonite mixtures to evaluate the effect of wetting–drying cycles. The hydraulic conductivity tests were performed to see if their hydraulic conductivities are affected by wetting–drying cycles. First series of specimens have been prepared as a mixture of sand and bentonite only. In the first series of specimens, sand was mixed with bentonite in proportions of 20, 30, 40, and 50 %. In the second series of the specimens, lime in proportions of 1, 2 and 3 % by weight was added to the mixtures of sand–bentonite in proportions of 20, 30, 40, and 50 %. From the results of the tests, it was observed that while optimum water content increased, maximum dry density decreased with addition of lime to the sand–bentonite mixtures. Generally, the hydraulic conductivity increased with the addition of lime to the mixtures but at low percentages of lime (1–2 %), however, slight decreases in k were recorded. It was also observed that the wetting–drying cycles on the permeability test indicate cure effect on specimens with addition of lime which resulted in decreased the hydraulic conductivity.  相似文献   

12.
Integrated surface electrical resistivity and electromagnetic (EM) surveys were conducted in a hard-rock terrain of Southwestern Nigeria in the vicinity of active oxidation sewage treatment ponds. The aim was to detect soil contamination due to the spread of sewage effluent, locate possible leachate plumes and conductive lithologic layers, and access the risk of groundwater pollution in the vicinity of the sewage-ponds. Dipole–dipole resistivity profiling and very low frequency (VLF) data were acquired at 10-m intervals along five 200-m long east-west geophysical traverses. Resistivity sections obtained revealed four subsurface geologic layers comprised of lateritic clay, clayey sand/sand, weathered/fractured bedrock, and competent bedrock. A distinct low resistivity zone corresponding to the contamination plume (labeled B) was delineated from all the resistivity sections. This low zone extends into the weathered bedrock and possibly suggests contamination of this layer. The filtered real component of the processed VLF data detected three distinct anomaly zones that are representative of fractured zones filled with conductive fluids and/or lithologic boundaries that possibly serve as conduits for the movement of contaminated effluents. The results obtained from the two methods suggest possible contamination of the subsurface soil layers and groundwater in the vicinity of the sewage-ponds. The existence of this contaminated plume poses a serious threat to the ecosystem and health of the people living in the vicinity of the sewage-ponds.  相似文献   

13.
A bench scale study was conducted to assess the possibility and extent of biological clogging in compacted clayey soil exposed to high-strength leachate simulating conditions in a landfill. In two series of experiments, distilled–deionized water, slightly acidic water and fresh high-strength leachate were permeated through compacted clayey soil and the rate of infiltration was recorded. Colony-forming units per unit mass of soil were counted, and scanning electron microscope photographs were taken before and after termination of experiments. Results indicated that infiltration of leachate containing a very high concentration of organic matter followed a logistic fit indicating hydraulic clogging of the porous media. This was in agreement with a five order of magnitude greater bacterial growth compared to the original state of the soil and to cases where distilled–deionized and acidified water was used as the permeant. Water and acidified water infiltration followed a power fit indicating persistent infiltration through the end of experiments with no sign of clogging. Bacterial counts in these cases were similar to that of the original state of the soil. Photographs taken by scanning electron microscope also indicated formation of plate-like material within the soil texture in contrast to no change when water was used as the permeating fluid and to formation of holes when acidified water was infiltrated through the soil. It was concluded that biological clogging considerably reduced the rate of infiltration within compacted clayey soil shortly after exposure to high-strength leachate.  相似文献   

14.
Laboratory tests were conducted on a reddish-brown lateritic soil treated with up to 12 % bagasse ash to assess its suitability in waste containment barriers applications. Soil samples were prepared using four compaction energies (i.e. reduced Proctor, standard Proctor, West African Standard or ‘intermediate’ and modified Proctor) at ?2, 0, 2 and 4 % moulding water content of the optimum moisture content (OMC). Index properties, hydraulic conductivity (k), volumetric shrinkage and unconfined compressive strength (UCS) tests were performed. Overall acceptable zones under which the material is suitable as a barrier material were obtained. Results recorded showed improved index properties; hydraulic conductivity and UCS with bagasse ash treatment up to 8 % at the OMC. Volumetric shrinkage strain increased with higher bagasse ash treatment. Based on the overall acceptable zone obtained, an 8 % optimal bagasse ash treatment of the natural lateritic soil makes it suitable for use in waste containment barrier application.  相似文献   

15.
污泥屏障渗透性及重金属阻截效果试验研究   总被引:1,自引:0,他引:1  
张虎元  杨博  高全全  张光伟 《岩土力学》2012,33(10):2910-2916
目前,废弃物处置场渗滤液中的重金属污染物只能依靠极低渗透性的水力屏障来控制,还不存在利用化学场专门拦截重金属污染物的反应型屏障。在有机结合生活污泥的低渗透性与丰富的有机质和厌氧微生物特性的基础上,提出“污泥屏障”的构想。研究利用柔性壁渗透仪测量不同有效应力作用下生活污泥试样的渗透系数,并对渗出液的化学性质进行了监测,验证污泥屏障的可行性。试验结果表明:随着有效应力的增大,污泥试样干密度提高,渗透系数的对数值随孔隙比的减小线性降低。试样内部微生物厌氧呼吸形成的生物膜和无机物沉淀以及黏土颗粒双电层厚度的增大,也是污泥渗透系数降低的原因,污泥渗透系数仅为 数量级。另外,污泥强烈吸附能力及厌氧微生物呼吸作用形成的中-弱碱性还原环境,对渗透液中的Zn和Cd都起到了很好的拦截作用。  相似文献   

16.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

17.
温度和模拟渗滤液作用下黏土的渗透性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用改造的GDS全自动环境岩土渗透仪,分别以自来水和模拟渗滤液为试验用水,开展不同温度和围压下黏土渗透性能试验。研究表明,当温度从20℃升高至50℃时,渗透系数增大,最大增幅为3.5倍;当围压从50kPa增大至200kPa时,渗透系数从10-6cm/s数量级减小至10-8cm/s数量级。在温度和围压一定时,模拟渗滤液作用下黏土的渗透系数略大于自来水试验结果,二者最大比值为2.8。随着温度的升高,土中吸附结合水膜变薄,且土样体积减小,在两种效应的共同作用下,固有渗透率不是定值,相应条件下50℃与20℃固有渗透率的比值在0.72~2.99之间变化。在本试验条件下,渗透系数随温度的变化主要是由水动力黏滞系数的变化引起,但是在低围压、自来水试验时理论推算渗透系数小于实测值,高围压下理论推算值大于实测值。  相似文献   

18.
In current geoenvironmental practice, design engineers usually require that soil liners in waste landfills be compacted within a specified range of water content and dry unit weight. This specification is based primarily on the need to achieve a minimum dry unit weight for factors controlling the performance of compacted soil liners most especially the hydraulic conductivity, k. In this study, lateritic soil treated with up to 10% bentonite, prepared at various compaction states (dry of optimum, optimum and wet of optimum moisture content) was compacted with four compactive efforts (i.e., the reduced British Standard Light, British Standard Light, West African Standard, and British Standard Heavy) to simulate the range of compaction energies expected in the field. Prepared soil mixtures were permeated with water and specimens that yielded the permissible limit of k????1?×?10?9?m/s were enclosed in an envelope (known as the acceptable zone) on the water content?Cdry unit weight curve. It was observed that compaction conditions resulting in moisture content slightly wet of optimum led to the lowest values of k and that the shapes and boundaries of the acceptable zones gradually increased in extent, shifting to wet side of optimum moisture content as the bentonite content increased to 10%. This approach provides good control over the quality of compacted soils and has great potential for field application.  相似文献   

19.
The formation factor relates bulk resistivity to pore fluid resistivity in porous materials. Understanding the formation factor is essential in using electrical and electromagnetic methods to monitor leachate accumulations and movements both within and around landfills. Specifically, the formation factor allows leachate resistivity, the degree of saturation, and, possibly, even the hydraulic conductivity of the waste to be estimated from non-invasive surface measurements. In this study, apparent formation factors are computed for three landfills with different types of waste as well as sediments contaminated by landfill leachate. Resistivity soundings at the closed Mallard North landfill in suburban Chicago (Illinois, USA) mapped leachate surfaces that were confirmed by monitoring wells. The resistivity of leachate-saturated waste from resistivity sounding inversions was then divided by the leachate resistivity values measured in-situ to compute apparent formation factors (Fa) ranging from 1.6 to 4.9. A global Fa of 3.0±1.9 was computed for the entire monitored portion of this landfill At a nearby mixed laboratory waste landfill, a 2D inverted resistivity section was used to compute an Fa of 2.9. Finally, a distinctly different Fa value of 10.6±2.8 was computed for leachate-saturated retorted oil and organic compounds. The Fa for aquifers containing contaminated groundwater fall in the same range as aquifers with normal groundwater, 1.7-3.9. However, models from inverted sounding curves over these contaminated areas exhibit unusually low resistivity layers, which may be diagnostic of contamination.  相似文献   

20.
《Engineering Geology》2000,56(3-4):293-303
This study aims at investigating the utilization of bottom ash obtained from four different power stations as a construction fill and landfill bottom liner. For the matrix material, commercial powdered bentonite, construction lime and natural clay were used. Compaction tests (Standard Proctor and vibratory hammer) were carried out on the different ratios of bottom ash and matrix material. The optimum water content ranged from 40 to 45% yielding a dry density mostly ca 1 Mg m−3. Uniaxial compressive strength of mixtures ranges from 0.1 to 0.5 kgf cm−2 which showed a 3–20-fold increase when tested on 28-day cured specimens. Triaxial compression tests yield varying rates of shear strength which also showed as high as an 11-fold increase for cured specimens. The hydraulic conductivity of those mixtures was mostly ca 10−4 cm s−1, which is not considered to be low enough for landfill lining. Leaching tests using deionized water were also performed to investigate the possible effect of leachate produced from the mixtures on the environment. In conclusion a light density and environmentally friendly mixture is determined and proposed as construction filler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号