首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Panarea volcano (Aeolian Islands, Italy) was considered extinct until November 3, 2002, when a submarine gas eruption began in the area of the islets of Lisca Bianca, Bottaro, Lisca Nera, Dattilo, and Panarelli, about 2.5 km east of Panarea Island. The gas eruption decreased to a state of low degassing by July 2003. Before 2002, the activity of Panarea volcano was characterized by mild degassing of hydrothermal fluid. The compositions of the 2002 gases and their isotopic signatures suggested that the emissions originated from a hydrothermal/geothermal reservoir fed by magmatic fluids. We investigate crustal deformation of Panarea volcano using the global positioning system (GPS) velocity field obtained by the combination of continuous and episodic site observations of the Panarea GPS network in the time span 1995–2007. We present a combined model of Okada sources, which explains the GPS results acquired in the area from December 2002. The kinematics of Panarea volcano show two distinct active crustal domains characterized by different styles of horizontal deformation, supported also by volcanological and structural evidence. Subsidence on order of several millimeters/year is affecting the entire Panarea volcano, and a shortening of 10−6 year−1 has been estimated in the Islets area. Our model reveals that the degassing intensity and distribution are strongly influenced by geophysical-geochemical changes within the hydrothermal/geothermal system. These variations may be triggered by changes in the regional stress field as suggested by the geophysical and volcanological events which occurred in 2002 in the Southern Tyrrhenian area.  相似文献   

2.
Beneath Mount Fuji, the highest active volcano in Japan, deep low-frequency (DLF) earthquake activity has been monitored since the early 1980s. The DLF earthquakes occurred in the mid-crustal depth range, and burst-type activity lasting from several minutes to 30 min was detected 10 to 20 times in an ordinary year. The DLF earthquake activity increased sharply in the period from October 2000 to May 2001, showing swarm-like activity. The occurrence rate during the DLF earthquake swarm was approximately 20 times higher than the usual activity, and the wave energy released during the swarm period was twice as high as the total wave energy during the past 20 years. The DLF earthquakes in the period from 1987 to 2001 were relocated by estimating station corrections in order to reduce the effect of the change of seismic station distribution. The epicenters of most DLF earthquakes occurred in an elongated region with a long axis of about 5 km, whose center is located 2–3 km NE from the summit. A few percent of the DLF earthquakes, however, occurred around the summit area, significantly apart from the main epicenter region. The focal depths of well-located DLF events range from 10 to 20 km. During the high activity period in 2000 and 2001, most DLF events occurred within this main hypocenter area. The sharp increase of DLF earthquake activity at Mount Fuji started immediately after magma discharge and intrusion events in the Miyake-jima and Kozu-shima regions in July and August 2000. The tectonic and volcanic activity changes around the area suggest that the DLF earthquake swarm at Mount Fuji was triggered by the change of state of the deep magmatic system around Mount Fuji.Editorial responsibility: J Stix  相似文献   

3.
Since the 8th century, more than seventeen eruptions have been recorded for the Mt. Fuji volcano, with the most recent eruption occurring in 1707 (Hoei eruption). For the past 300 years the volcano has been in a quiescent stage and, since the early 1960s, has exhibited neither fumarolic nor thermal activity. However, the number of low-frequency earthquakes with a hypocentral depth of 10–20 km increased significantly beneath the northeastern flank of Mt. Fuji in 2000–2001, suggesting a possible resumption of magmatic activity. In this study, diffuse CO2 efflux and thermal surveys were carried out in four areas of the volcano in 2001–2002 in order to detect possible signs of the upward movement of deep magma. At all survey points, the CO2 efflux was below the detection limit with the exception of a few points with biological CO2 emission, and ground temperatures at a depth of 20–30 cm were below ambient, indicating no surface manifestations of gas or heat emission. Should magma rise into the subsurface, the diffuse CO2 efflux would be expected to increase, particularly along the tectonically weakened lineation on the Mt. Fuji volcano, allowing for the early detection of pre-eruptive degassing.  相似文献   

4.
Magnetotelluric (MT) measurements were conducted at Iwate volcano, across the entirety of the mountain, in 1997, 1999, 2003, 2006, and 2007. The survey line was 18 km in length and oriented E–W, comprising 38 measurements sites. Following 2D inversion, we obtained the resistivity structure to a depth of 4 km. The surface resistive layer (~ several hundreds of meters thick) is underlain by extensive highly conductive zones. Based on drilling data, the bottom of the highly conductive zone is interpreted to represent the 200 °C isotherm, below which (i.e., at higher temperatures) conductive clay minerals (smectite) are rare. The high conductivity is therefore mainly attributed to the presence of hydrothermally altered clay. The focus of this study is a resistive body beneath the Onigajo (West-Iwate) caldera at depths of 0.5–3 km. This body appears to have impeded magmatic fluid ascent during the 1998 volcanic unrest, as inferred from geodetic data. Both tectonic and low-frequency earthquakes are sparsely distributed throughout this resistive body. We interpret this resistive body as a zone of old, solidified intrusive magma with temperatures in excess of 200 °C. Given that a similar relationship between a resistive body and subsurface volcanic activity has been suggested for Asama volcano, structural controls on subsurface magmatic fluid movement may be a common phenomenon at shallow levels beneath volcanoes.  相似文献   

5.
On May 1st 2008 Mount Chaitén (southern Chile) interrupted a long period of quiescence, generating a sequence of explosive eruptions and causing the evacuation of Chaitén town located a few kilometers south of the volcano. The activity was characterized by several explosive events each associated with plumes which reached up to about 19 km above sea level. The products were dispersed across a wide area, with the finest ash reaching the Atlantic coast of Argentina. Our field observations in the proximal-medial area (3–25 km from the vent) indicate that the May 2008 tephra deposit consists of numerous layers, most of which can be correlated with individual eruptive events. These layers vary from extremely fine-grained ash to layers of lapilli and blocks, composed of both juvenile and lithic material. Here we describe the stratigraphy and physical characteristics of the May 2008 deposits, and propose a reconstruction of the timing of the May 2008 events. The deposits are mainly associated with the three main explosive phases which occurred on 1st–2nd May, 3rd–5th May and 6th May, with an estimated bulk tephra volume of 0.5–1.0 km3 (integration of both exponential and power-law fitting). For the 6th May event, represented by a layer composed mainly of lithic lapilli and blocks (>2 mm), an isopleth map was compiled from which a 19 km plume height was determined, which is in good agreement with satellite observations.  相似文献   

6.
Iwate volcano, Japan, showed significant volcanic activity including earthquake swarms and volcano inflation from the beginning of 1998. A large earthquake of magnitude 6.1 hit the south-west of the volcano on September 3. Although a 1 km2 fumarole field formed, blighting plants on the ridge in the western part of the volcano in the spring of 1999, no magmatic eruptions occurred. We reconcile the spatio-temporal distributions of volcanic pressure sources determined by previously reported studies in which GPS, strain and tilt data from dense geodetic station networks are analyzed (Miura et al. Earth Planet Space 52:1003–1008, 2000; Sato and Hamaguchi J Volcanol Geotherm Res 155:244–262, 2006). We calculate the magma supply rates from their results and compare them with the occurrence rates of volcanic earthquakes. The results show that the magma supply rates are almost constant or even decrease with time while the earthquake occurrence rate increases with time. This contrast in their temporal changes is interpreted to result from stress accumulation in the volcanic edifice caused by constant magma supply without effusion of magma to the surface. We further show that data showing slight acceleration in strain can be best explained by magma ascent at a constant velocity, and that there is no evidence for increased magma buoyancy resulting from gas bubble growth. This consideration supports the interpretation that the magma stayed at 2 km depth and horizontally migrated. These findings relating magma supply rate and seismicity to magma ascent process are clues to understanding why no magmatic eruption occurred at Iwate volcano in 1998.  相似文献   

7.
In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I examine and discuss the alternative hypothesis that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions are used to show that Stromboli's feeding magma may originally contain as much as 2 wt.% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (≥ 60 at 10 km depth below the vents, compared to ~ 7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt–gas mixture until the volcano–crust interface (~ 3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (such as the volcano–crust interface) where the gas-rich aphyric basalt interacts with the unerupted crystal-rich and viscous magma drained back from the volcano conduits. Gas pressure build-up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli's paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.  相似文献   

8.
Since the end of the last magmatic eruption (1890), activity of La Fossa (southern Tyrrhenian Sea, Italy) has consisted of fumarolic emissions of fluctuating intensity. Fluids are discharged principally at two fumarolic fields located in the northern rim of the active crater and at the beach sited at its northern foot. Increased thermal, seismic and geochemical activity has been recorded since 1978, when an earthquake of M=5.5 occurred in the region. This paper combines available geophysical and geochemical information in order to develop a tentative interpretation of two episodes of apparent unrest which occurred in 1985 and 1987–1988, enhancing the risk of renewal of the eruptive activity. The 1985 unrest consisted essentially of a sharp build up of the internal pressure in the shallow hydrothermal system, which was induced by the injection of hot gases of magmatic origin. The crater fumaroles displayed significant increases in CO2 and other acid species, but their outlet temperature did not change. Conversely, the 1987–1988 episode was characterized by appreciable modifications at the crater fumaroles, with only secondary effects at the fumarole system of the beach. The sliding of part of the eastern flank of the La Fossa cone into the sea occurred on 20 April 1988, when the region was affected by crustal dilatation producing a seismic sequence of relatively high intensity. Both episodes of unrest were accompanied by increases of local microseismic activity, which affected the nothern sector of the island in 1985, and the southern one in 1988. Finally, a phase of appreciable areal contraction was detected in 1990, probably due to the effect of the cooling and crystallization of magma at relatively shallow depths, accompanying the increased thermal activity at the crater fumaroles. Regional tectonic stress seems to play an important role in the transition of the volcanic system from a phase of relative stability to a phase of apparent unrest, inducing the heating and the expansion of shallow hydrothermal fluids. Available information is insufficient to indicate whether or not the volcano is building towards the renewal of a magmatic eruption, and there is no evidence to hypothesize episodes of significant magma migration. The frequency of measurements of many parameters needs to be increased in order to learn more about the temporal relationships between geochemical and geophysical variations preceding and accompanying periods of increased thermal activity. This will probably be a valid tool for recognizing short-term precursors of a future eruption, reducing the risk of false alarms.  相似文献   

9.
Extensive measurements of ground deformation at the Krafla volcano, Iceland, have been made since the beginning in 1975 of a series of eruptions and intrusions into the fissure system that extends north and south of the volcano. I concentrate on measurements before and after the eruption of September 1984, the last event of this series when the largest volume of lava was erupted. The patterns of ground deformation associated with the 1984 eruption, determined by precision levelling, electronic distance measurements and lake level observations, were similar to earlier intrusions and eruptions, in that the surface of the volcano subsided and the fissure system widened as magma moved laterally from a shallow central reservoir into the fissure system. The shallow magma reservoir of Krafla continued to expand for about five years after the eruption, but a slow subsidence of the central area began in 1989. Besides the presence of an inflating and deflating shallow magma reservoir at a depth of 2.5 km beneath the Krafla caldera, another inflating magma reservoir may exist at much greater depth below Krafla. The accumulation of compressive strain by numerous rift intrusions and eruptions since 1975 along the flanks of the north-south Krafla fissure swarm is being released slowly and will probably be reflected in the results of deformation measurements near Krafla for the next several decades. The total horizontal extension of the Krafla rift system in 1975–1984 was about 9 m, equal to about 500 years of constant plate divergence. The extension is twice the accumulated divergence since previous rifting events and eruptions in 1724–1729  相似文献   

10.
Mount Etna volcano (Italy) during the period 2001–2005 has undergone a period of intense eruptive activity marked by three large eruptions (2001, 2002–2003 and 2004–2005). These eruptions encompassed diverse eruptive styles and regimes: from intensely explosive, during 2001 and 2002–2003 eruptions, to exclusively effusive in the 2004–2005 event. In this work, we put forward the idea that these three eruptions are the response of the progressive arrival into the uppermost segment of the open-conduit system of a new magma, which was geochemically distinct in terms of trace element and Sr–Nd–Pb isotope signature from the products previously emitted by the Etnean volcano. The magma migrated upwards mainly through a peripheral tectonic system, which can be considered as eccentric in spite of its relative proximity to the main system. The ingress of the new magma and its gradual displacement from the eccentric system into the uppermost sector of the open-conduit gave rise to different eruptive behaviours. At the beginning, the ascent of the undegassed magma, able to exsolve a gas phase at depth, and its interaction with closed-system magma reservoirs less than 10 km deep gave rise to the explosive events of 2001 and 2002–2003. Later, when the same magma entered into the open-conduit system, it took part in the steady-state degassing and partially lost its volatile load, leading to a totally effusive eruption during the 2004–2005 event. One further consideration highlighted here is that in 2001–2005, migration of the feeding axis from an eccentric and peripheral position towards the main open-conduit has led to the development of a new vent (South East Crater 2) located at the eastern base of the South East Crater through which most of the subsequent Etnean activity occurred.  相似文献   

11.
Pavlof Volcano (55° 25′N, 161° 54′W) exhibits two eruption styles: magmatic eruptions of one-to-two-days duration, and phreatic-phreatomagmatic activity lasting several days to two months. Thirty-four eruptions have occurred in historic times; of these the largest are Volcano Explosivity Index=3. Nine magmatic and 13 phreatomagmatic eruptions occurred between 1973–1983. All the magmatic eruptions occurred in the fall, between Sept. 9–Nov. 20. Four magmatic eruptions occurred during November 11–15, but in four different years. A 3-year-long period of eruptive activity between 1973–1976 bears striking resemblance to a period of activity between 1980–1983. No locatable shallow earthquakes (<50 km) have occurred within 30 km of Pavlof since 1973, which is quite unusual for an active island-arc volcano. Shallow events in the adjacent are segments have focal mechanisms with P-axes perpendicular to the arc (and parallel to plate convergence). Deep earthquakes (> 100 km) are clustered beneath Pavlof and several other volcanoes. Their T-axes show downdip tension within the slab. Deep teleseisms (> 160 km) mostly occurred between 1977–1979 when the volcano was not erupting. Catalogued volcanic activity throughout the Alaska/Aleutian arc shows a weak tendency to increase around the time of great (M > 7.8) earthquakes.  相似文献   

12.
Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH ≈ 6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH ≈ 2) saline (10 g/kg of Cl) water with a much lower outflow rate (< 10 l/s).  相似文献   

13.
Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. W. Sisson and J. W. Vallance contributed equally to this study.  相似文献   

14.
After 16 months of quiescence, Mount Etna began to erupt again in mid-July 2006. The activity was concentrated at and around the Southeast Crater (SEC), one of the four craters on the summit of Etna, and eruptive activity continued intermittently for 5 months. During this period, numerous vents displayed a wide range of eruptive styles at different times. Virtually all explosive activities took place at vents at the summit of the SEC and on its flanks. Eruptive episodes, which lasted from 1 day to 2 weeks, became shorter and more violent with time. Volcanic activity at these vents was often accompanied by dramatic mass-wasting processes such as collapse of parts of the cone, highly unusual flowage processes involving both old rocks and fresh magmatic material, and magma–water interaction. The most dramatic events took place on 16 November, when numerous rockfalls and pyroclastic density currents (PDCs) were generated during the opening of a large fracture on the SE flank of the SEC cone. The largest PDCs were clearly triggered explosively, and there is evidence that much of the energy was generated during the interaction of intruding magma with wet rocks on the cone’s flanks. The most mobile PDCs traveled up to 1 km from their source. This previously unknown process on Etna may not be unique on this volcano and is likely to have taken place on other volcanoes. It represents a newly recognized hazard to those who visit and work in the vicinity of the summit of Etna.  相似文献   

15.
La Soufrière of Guadeloupe is a dangerous volcano characterized over the last decade by moderate seismic and fumarolic unrest. In the last 15,000 years it has experienced phreatic and magmatic eruptions and unusually numerous flank collapse events sometimes associated with a magmatic eruption. We propose a new age of 1530 A.D. and a new eruptive scenario for the last magmatic eruption on the basis of a novel statistical analysis of radiocarbon age dates, and new field and geochemical data. This eruption is the only magmatic eruption likely to have occurred in Guadeloupe during the last 1400 years. The eruption mainly involved an andesitic magma which, in the first phase of the eruption, partially mixed with a slightly more differentiated magma stored in a small and shallow magma chamber. Ascent of magma to the surface generated a partial collapse of the hydrothermally altered edifice that increased the magma discharge and led to a sub-plinian phase with scoria fallout and column-collapse pyroclastic flows followed by near-vent pyroclastic scoria fountains. The eruption ended with growth of a lava dome. Our revised interpretation of the last magmatic eruption of La Soufrière constitutes the most likely key to a future magmatic eruption scenario for this volcano which displays strong evidence of unrest since 1992.  相似文献   

16.
Mount Morning is a Cenozoic, alkaline eruptive center in the south-west Ross Sea, Antarctica. New ages on 17 Mount Morning volcanic rocks (combined with 34 existing ages) allows division of Mount Morning volcanism into two phases, erupted between at least 18.7 Ma and 11.4 Ma, and 6.13 and 0.02 Ma. The position of Mount Morning on the active West Antarctic Rift System within the stationary Antarctic plate is a key factor in the eruptive center’s longevity. The earliest, mildly alkaline, Phase I volcanism comprises predominantly trachytic rocks produced by combined assimilation and fractional crystallization processes over 7.3 m.y. Strongly alkaline Phase II volcanism is dominated by a basanite – phonolite lineage, with the youngest (post last glacial maximum) activity dominated by small volume primitive basanite eruptions. The evolution from mildly to strongly alkaline chemistry between phases reflects magma residence time in the crust, the degree of mantle melting, or the degree of magma—country-rock interaction. Phase I magmatism occurred over a comparable area to the present-day, Phase II shield. The 5.2 m.y. volcanic hiatus separating Phase I and II coincides with a cycle of eruption and glacial erosion at the nearby Minna Bluff eruptive center. Mount Morning is the likely source of volcanic detritus in Cape Roberts drill-core (about 24.1 to 18.4 Ma) and in ANDRILL drill-hole 1B (about 13.6 Ma), located 170 km north and 105 km north-east respectively, of Mount Morning. Based upon the timing of eruptions and high heat-flow, Mount Morning should be considered a dormant volcano.  相似文献   

17.
Significant changes in the local magnetic field marked the resumption of eruptive activity at Stromboli volcano on February 27, 2007. After differential magnetic fields were obtained by filtering out external noise using adaptive filters and seasonal thermal noise using temperature data, we identified step-like changes of 1–4 nT coincident with the opening of eruptive fissures in the upper part of the Sciara del Fuoco. The magnetic variations detected at two stations are closely related to the propagation of a shallow NE–SW magmatic intrusion extending beyond the summit craters area. These observations are consistent with those calculated using piezomagnetic models in which stress-induced changes in rock magnetization are produced by the magmatic intrusion. No significant magnetic changes were observed when the first fractures opened along the NE crater rim. Indeed, the stress-induced magnetization caused by this magmatic activity is expected to be too low because of the structural weakness and/or thermal state of the summit area. The continuous long-term decay characterizing the post-eruptive magnetic pattern can be related to a time-dependent relaxation process. A Maxwell rheology was assumed and the temporal evolution of the piezomagnetic field was evaluated. This allowed us to estimate the rheological properties of the medium; in particular, an average viscosity ranging between 1016 and 1017 Pa⋅s was a relaxation time τ of about 38 days.  相似文献   

18.
From September 1999 through April 2004, Shishaldin Volcano, Aleutian Islands, Alaska, exhibited a continuous and extremely high level of background seismicity. This activity consisted of many hundreds to thousands of long-period (LP; 1–2 Hz) earthquakes per day, recorded by a 6-station monitoring network around Shishaldin. The LP events originate beneath the summit at shallow depths (0–3 km). Volcano tectonic events and tremor have rarely been observed in the summit region. Such a high rate of LP events with no eruption suggests that a steady state process has been occurring ever since Shishaldin last erupted in April–May 1999. Following the eruption, the only other signs of volcanic unrest have been occasional weak thermal anomalies and an omnipresent puffing volcanic plume. The LP waveforms are nearly identical for time spans of days to months, but vary over longer time scales. The observations imply that the spatially close source processes are repeating, stable and non-destructive. Event sizes vary, but the rate of occurrence remains roughly constant. The events range from magnitude ∼ 0.1 to 1.8, with most events having magnitudes < 1.0. The observations suggest that the conduit system is open and capable of releasing a large amount of energy, approximately equivalent to at least one magnitude 1.8–2.6 earthquake per day. The rate of observed puffs (1 per minute) in the steam plume is similar to the typical seismic rates, suggesting that the LP events are directly related to degassing processes. However, the source mechanism, capable of producing one LP event about every 0.5–5 min, is still poorly understood. Shishaldin's seismicity is unusual in its sustained high rate of LP events without accompanying eruptive activity. Every indication is that the high rate of seismicity will continue without reflecting a hazardous state. Sealing of the conduit and/or change in gas flux, however, would be expected to change Shishaldin's behavior.  相似文献   

19.
El Chichón volcano is an andesite stratovolcano in southern México. It erupted in March 1982, after about 550 years of quiescence. The 1982 eruption of El Chichón has not been followed by the growth of a lava dome within the newly formed crater. This is rather anomalous since the construction of a new dome after the destruction of an old one is a common process during the eruptions at andesite and dacite volcanoes. To discuss this anomalous aspect of the El Chichón eruption, some regularity in the process of re-awakening of dormant (here defined as a period of quiescence of more than 100 years) andesite and dacite volcanoes are studied based on the seismic activity recorded at the volcanoes Bezymianny, Mount St. Helens, El Chichón, Unzen, Pinatubo and Soufrière Hills. Three stages were identified in the re-awakening activity of these volcanoes: (1) preliminary seismic activity, leading up to the first phreatic explosion; (2) activity between the first and the largest explosions; (3) post-explosion dome-building process. The eruptions were divided into two groups: low-VEI (Volcanic Explosivity Index) and the long duration stage-1 events (Unzen, 1991 and Soufrière Hills volcano, 1995) and high-VEI and the short duration stage-1 events (Bezymianny, 1956; Mount St. Helens, 1980; El Chichón, 1982 and Pinatubo, 1992). The comparative analysis of the seismo-eruptive activity of two eruptions of the second group, the 1980 of Mt. St. Helens and the 1982 of El Chichón, produced an explanation the absence of new dome building during the 1982 eruption of El Chichón volcano. It may be explained in terms of the unusually rapid emission of gas and water from the magmatic and hydrothermal system beneath the volcano during a relatively short sequence of large explosions that could have sharply increased the viscosity of the magma making impossible its exit to the surface.  相似文献   

20.
Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5–6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO2. The first and largest eruption caused the inward collapse of a stratovolcano and produced the ‘Tofua’ ignimbrite and a sub-circular caldera located slightly northwest of the island’s centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands >40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma–water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, large-scale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the ‘Hokula’ Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km3 of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of ∼12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40–80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24 × 1013 kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号