首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Central Zone of the Limpopo Belt (South Africa) underwent high-grade metamorphism at 2.7–2.5 and 2.03 Ga. Quartz-rich, garnet-, cordierite-, biotite- and orthoamphibole-bearing, feldspar-free gneisses from the western Central Zone reached granulite-facies conditions (800 °C at 8–10 kbar) followed by decompression. Garnet from one such sample shows significant zonation in trace elements but little zonation in major elements. Zoning patterns suggest that the early prograde breakdown of REE-rich accessory phases contributed to the garnet trace element budget. Monazite from the sample yields a SHRIMP weighted mean 207Pb–206Pb age of 2028 ± 3 Ma, indistinguishable from a SHRIMP zircon age of 2022 ± 11 Ma previously measured on metamorphic overgrowths on 2.69 Ga igneous zircon cores. New zircon and monazite formed before, or at, the metamorphic peak, and occur as inclusions in garnet. Monazite appears to have formed through the breakdown of early allanite ± xenotime ± apatite. Trace element zoning patterns in garnet and the age of accessory phases are most consistent with a single tectonometamorphic event at 2.03 Ga.

The plagioclase and K-feldspar-free composition of the garnet–cordierite–orthoamphibole gneisses requires open system processes such as intense hydrothermal alteration of protoliths or advanced chemical weathering. In the studied sample, the 2.69 Ga igneous zircons show a prominent negative Eu anomaly, suggesting equilibrium with plagioclase, or plagioclase fractionation in the precursor magma. In contrast, the other minerals either show small negative (2.03 Ga monazite), no (2.02 Ga zircon and garnet) or positive Eu anomalies (orthoamphibole). This suggests that the unusual bulk compositions of these rocks were set in after 2.69 Ga but before the peak of the 2.03 Ga event, most probably while the protoliths resided at shallow or surficial crustal levels.  相似文献   


2.
The extent of the deposition and of the preservation of the Blouberg Formation and Waterberg Group was at least partially controlled by brittle reactivation along the Palala Shear Zone. The Palala Shear Zone in the Blouberg area (Northern Province, South Africa) is characterised by granulite-grade gneiss, and formed by sinistral transpressional collision between the Southern Marginal Zone (Kaapvaal Craton) and the Central Zone of the Limpopo Belt. The Limpopo collision is thought to have occurred either at 2.0 Ga or at 2.7 Ga with reactivation at 2.0 Ga. Deposition of the Blouberg Formation was characterised by syn-sedimentary tectonism, which is reflected by a sudden upward coarsening in sedimentary rocks, and by the presence of a strongly folded and thrusted lower member. Bedding orientations and slickenside lineation orientations suggest that vergence was towards the south, and such a tectonism can be inferred to have produced a highland area to the north, bound on the southern margin by the southern strand of the Melinda Fault. The presence of an inferred northerly upland area is supported by palaeocurrent directions and the preservational extent of the Setlaole and Makgabeng Formations of the Waterberg Group (post-Blouberg Formation). The extent and stratigraphy of the overlying Mogalakwena Formation suggests that these strata onlapped northwards over the denuding highlands. Younger Sibasa basalts of the Soutpansberg Group have been dated at ca. 1.85 Ga. Blouberg and Waterberg strata can therefore be interpreted as syn- and post-tectonic sedimentary rocks, respectively, following a ca. 2.0 reactivation event along the Palala Shear Zone. It is difficult to reconcile the succession of geological events at Blouberg with a ca. 2.0 Ga Limpopo orogeny, and thus sedimentary strata in the study area support a 2.7 Ga date for Limpopo collision, with syn-Blouberg tectonism relating to ca. 2.0 reactivation within the previously assembled Limpopo Belt.  相似文献   

3.
The Limpopo Belt in Southern Africa has been used to demonstrate that modern-style continent-continent collision operated during the Late Archaean (2.6–2.7 Ga). We have studied the age and PT conditions of strike-slip tectonism along the important right-lateral Triangle Shearzone. Our results substantiate existing Proterozoic metamorphic mineral age data of prior uncertain significance. Using the PbPb and SmNd garnet chronometers and the ArAr step heating technique for amphibole, we have dated pre- and syn-tectonic metamorphic minerals at 2.2 and 2.0 Ga. Thus the Triangle Shearzone can now be regarded as an important Proterozoic suture. Examination of corresponding high-grade PT conditions, reaching 800°C at 9 kbar, indicates a clockwise metamorphic evolution with pronounced isothermal uplift. Although the evidence that thrusting of the Marginal Zones of the Limpopo Belt over the adjoining cratons occurred during the Late Archaean clearly remains, it is now very uncertain to which event the various PT paths obtained in the Limpopo Belt may be assigned. Therefore the question of whether the 2.6–2.7 Ga tectonism fits on its own a modern-style continental collision model remains open and has to be reassessed.  相似文献   

4.
Following terrane amalgamation of early oceanic lithosphere, the southern and central parts of the Kaapvaal Craton were a coherent unit by 3.1 Ga. Juxta-position of the northern and western granitoid-greenstone terranes including the Murchison Island Arc was the result of terrane accretion that started at 3.1 Ga. The culmination of these events was the collision of the Kaapvaal Craton, the pre-cratonic Zimbabwe block and the Central Zone to generate the Limpopo granulite gneiss terrane. Coeval with these orogenic events the central Kaapvaal Craton underwent extension to accommodate the development of the Dominion, Witwatersrand/Pongola and Ventersdorp basins. The craton scale Thabazimbi-Murchison Lineament development during the 3.1 Ga accretion event and continued to influence the tectonic evolution of the Kaapvaal block throughout the period under review as indicated by the syn-sedimentary tectonics of the > 2.64 Ga Wolkberg Group, overlying Black Reef Formation and the Transvaal Sequence. The Transvaal and Griqualand West basins developed in the Late Archaean (> 2.55 Ga) with basin dynamics influenced by far field stresses related to the Limpopo Orogeny. During this period the Thabazimbi-Murchison Lineament lay close to the northern margin of the depository. Reactivation of the Lineament between 2.4 and 2.2 Ga resulted in inversion of the Transvaal Basin and formation of the northward verging Mhlapitsi fold and thrust belt. The half-graben setting envisaged for the deposition of the Pretoria Group was influenced by the Thabazimbi-Murchison Lineament as was the emplacement and subsequent deformation of the Bushveld Complex.  相似文献   

5.
The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3–3.1 Ga, 2.7–2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E–W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03–2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2–1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.  相似文献   

6.
A petrogenetic grid in the model system CaO–FeO–MgO–Al2O3–SiO2–H2O is presented, illustrating the phase relationships among the minerals grunerite, hornblende, garnet, clinopyroxene, chlorite, olivine, anorthite, zoisite and aluminosilicates, with quartz and H2O in excess. The grid was calculated with the computer software thermocalc , using an upgraded version of the internally consistent thermodynamic dataset HP98 and non‐ideal mixing activity models for all solid solutions. From this grid, quantitative phase diagrams (PT pseudosections) are derived and employed to infer a PT path for grunerite–garnet‐bearing amphibolites from the Endora Klippe, part of the Venetia Klippen Complex within the Central Zone of the Limpopo Belt. Agreement between calculated and observed mineral assemblages and garnet zonation indicates that this part of the Central Zone underwent a prograde temperature and pressure increase from c. 540 °C/4.5 kbar to 650 °C/6.5 kbar, followed by a post‐peak metamorphic pressure decrease. The inferred PT path supports a geotectonic model suggesting that the area surrounding the Venetia kimberlite pipes represents the amphibolite‐facies roof zone of migmatitic gneisses and granulites that occur widely within the Central Zone. In addition, the PT path conforms to an interpretation that the Proterozoic evolution of the Central Zone was controlled by horizontal tectonics, causing stacking and differential heating at c. 2.0 Ga.  相似文献   

7.
A new National Geological Map of Botswana incorporates data acquired from a variety of sources; the map is produced as a 1:1 million hardcopy as well as in digital format. The new map shows the pre-Kalahari Group geology. The oldest rocks are exposed in eastern Botswana where three Archaean terranes are recognised: the western parts of the Kaapvaal and Zimbabwe Cratons and the western part of the Limpopo Mobile Belt. All three terranes are lithologically similar but differ in their structural styles and in the timing of major thermal events. The oldest (pre-3.0 Gal high-grade metamorphic rocks are found in the Kaapvaal Craton, and the youngest in the Limpopo Mobile Belt, which appears to record Palæoproterozoic ductile shearing. Proterozoic orogenic belts, mostly concealed beneath Karoo rocks, define the western limits of the Archaean terranes and pprogressively young westwards away from the Archaean rocks. The Palwoproterozoic Magondi and Kheis Belts are well-defined by regional magnetic maps, but both are very poorly exposed in Botswana. The Kheis Belt trends due north from South Africa into central Botswana to define the western edge of the Kaapvaal Craton. The western part of the Magondi Belt, as well as all of a Mesoproterozoic (Kibaran) belt and rift are overprinted by the Neoproterozoic Damara Belt; all have pronounced northeasterly trends. During the Palæoproterozoic, there was also significant intraplate magmatism, sedimentation and deformation within the Archæan terranes. Some of the magmatism (in southeastern Botswana) was contemporaneous with, and lithologically similar to, the Bushveld Igneous Complex of South Africa. The main feature of the Mesoproterozoic geology of Botswana is a northeast trending rift that extends right across the northwest of the country and which is partly infilled with ca 1 106 Ma volcanic rocks. Neoproterozoic sedimentary rocks overlie the volcanics within the rift. The various rocks are exposed along the Ghanzi Ridge and to the northeast in the Chobe District.New detailed airborne magnetic surveys in northwest Botswana (Ngamiland) show the detailed geology of the northeast trending inland branch of the Damara Belt and exactly define its northwestern and southeastern boundaries. The southeastern part of the Damara Belt comprises the Mesoproterozoic volcanics of the Kgwebe Formation and the Neoproterozoic Ghanzi Group sedimentary strata. The full extent of the volcanics, and of the three formations recognised in the Ghanzi Group, is shown on the new map. Deformation of these rocks increases to the northwest where they are bounded by the tectono-stratigraphical Roibok Group. To the northwest of the Roibok Group are poorly dated granitoid rocks separated into several units that are locally overlain by carbonate-dominated sequences. A cover sequence of metasedimentary rocks with northnorthwest trending folds lies northwest of the Damara Belt. These sediments may overlie the southernmost part of the Congo Craton in the extreme northwest of Botswana. Neoproterozoic/ Lower Palæozoic sediments of the Nama Group partly infill a foreland basin to the south of the Damara belt in western Botswana.Karoo strata deposited within the Kalahari Basin underlie central Botswana. The distribution of the four major sedimentary groups, as well as of the capping basalts, is shown. The total thickness of the sediments is < 2000 m and the basalts are up to 1000 m in thickness. The sediments comprise a lower sequence (Dwyka and Ecca Groups) related to regional sagging and an upper sequence (Beaufort and Lebung Groups) that succeeded regional uplift that created intra-Karoo unconformities. Karoo sedimentation commenced towards the end of the Carboniferous Period and the basalts were extruded at about 180 Ma before Present. Wherever there have been detailed studies undertaken on the Karoo rocks, they show intense faulting that may or may not mimic structures in the pre-Karoo bedrock. The faulting appears to be post-sedimentation. No evidence was found for growth faults producing abnormal thicknesses of Karoo sediments. It is always possible to correlate the internal stratigraphy, at least at the formational level across the faults. Abnormal thicknesses of the basalts are preserved on the downthrow sides of the major faults. A major dyke swarm coeval with the extrusive basalts trends east-southeast right across north-central Botswana to cut across older structural trends.Over 200 kimberlites are shown on the new map. The kimberlites are distributed throughout Botswana in a number of separate clusters. Most of the kimberlites are of Cretaceous age. Isopachs are shown of the Kalahari Group, which is generally < 180 m in total thickness.  相似文献   

8.
Based on the results of Sm–Nd isotopic geochemical and U–Th–Pb geochronological LA–ICP–MS studies, it has been established that the formation of metamorphic rock protoliths of the Stanovoi Complex in the western Dzhugdzhur–Stanovoi Superterrane of the Central Asian Foldbelt took place over the following time spans: 2750–2860 Ma (Ilikan Group of the Ilikan Zone), 1890–1910 Ma (Bryanta Group of the Bryanta Zone), and ~2.0 Ga (Kupuri and Zeya groups of the Kupuri and Zeya zones, respectively). It has been shown that the western part of the Dzhugdzhur–Stanovoi Superterrane was formed ~1.9 Ga ago, as a result of collision of the Neoarchean Ilikan Terrane, the Paleoproterozoic island arc, and the Paleoproterozoic Kupuri–Zeya Terrane. The data make it possible to consider the Kurul’ta, and Zverevo blocks of the Stanovoi Structural Suture and the Ilikan Terrane of the Dzhugdzhur–Stanovoi Superterrane of the Central Asian Foldbelt as constituents of a common terrane.  相似文献   

9.
Contrary to previously suggested north-directed thrust emplacement of the central zone of the Limpopo mobile belt, we present evidence indicating west-directed emplacement. The central zone differs from the marginal zones in rock types, structural style and isotopic signature and is an allochthonous thrust sheet. It is bounded in the north by the dextral Tuli-Sabi shear zone and in the south by the sinistral Palala shear zone which are crustal-scale lateral ramps. Published gravity data suggest that the lateral ramps are linked at depth and they probably link at the surface, in a convex westward frontal ramp, in the vicinity of longitude 26°30′E in eastern Botswana. Two phases of movement, the first between 2.7 and 2.6 Ga and the second between 2.0 and 1.8 Ga. occurred on both the Tuli-Sabi and the Palala shear zones.  相似文献   

10.
吉林-黑龙江高压变质带的初步厘定:证据和意义   总被引:14,自引:11,他引:3  
本文定义的吉林-黑龙江高压变质带是指我国东北地区佳木斯-兴凯地块西缘和南缘共同发育的呈弧形展布的高压变质带,具体包括佳木斯-兴凯地块西缘增生杂岩带(黑龙江蓝片岩带和张广才-小兴安岭增生杂岩带)和佳木斯-兴凯地块南缘的长春-延吉增生杂岩带.其中佳木斯-兴凯地块西缘增生杂岩带形成于晚三叠-早侏罗世(180 ~ 210Ma),为佳木斯-兴凯地块向西冲增生而形成的高压变质带;而长春-延吉增生杂岩带由一系列特征性俯冲-增生杂岩组成,包括石头口门-烟筒山红帘石片岩带、呼兰群变质杂岩、色洛河群变质杂岩、青龙村群变质杂岩和开山屯变质杂岩等,形成时代为187~230Ma,峰期为220~230Ma.长春-延吉增生杂岩带曾被认为是西拉木伦河断裂带的东延部分,但是区域构造分析表明,它们形成的动力学背景与佳木斯-兴凯地块西缘增生杂岩带相同,均为太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合过程.我们将佳木斯-兴凯地块西缘和南缘发育的三叠纪-早侏罗世增生杂岩带作为统一的构造单元来考虑,结合该区发育有典型的高压变质带,因此命名为“吉林-黑龙江高压变质带,简称吉黑高压带”.吉黑高压带形成于太平洋板块三叠纪-早侏罗世的西向俯冲导致佳木斯-兴凯地块自东向西的“剪刀式”闭合的过程,同时该带记录了古亚洲构造域的结束和太平洋俯冲开始的关键时期,为两大构造域叠加与转换的关键性地质证据.  相似文献   

11.
12.
Cratons are generally assumed to be regions of long-lasting tectonic stability. In particular the study of the Phanerozoic exhumation history of cratons has been largely hampered by the scarcity of suitable stratigraphic controls onshore. This fact is even more pronounced in terranes lacking Mesozoic or younger penetrative structural fabrics and metamorphic overprinting. Our study in the Limpopo belt shows that modern apatite fission track thermochronology provides a hitherto unavailable perspective in the study of these rocks, and has profound implications for the crustal evolution of the Zimbabwe Craton.Apatite fission track data from 35 samples taken along two transects, in the southern edge of the Zimbabwe Craton and in the Central Zone of the Limpopo Belt, suggest that extensive regions experienced kilometer-scale exhumation in two discrete events, as recently as the Cretaceous. The first occurred at around 130 Ma, and the second at around 90 Ma. Basin subsidence and sedimentation loads on the Mozambique margin support the timing of these events and provide strong indications of the source and pathways for the eroded material. Further, the results indicate that young and old “surfaces” (in a geomorphological sense) may be structurally juxtaposed in regions of high elevation in Zimbabwe. This is contrary to early ideas of surface chronologies based on summit accordances or invoking pediplanation.  相似文献   

13.
This paper aims to discuss the structural evolution of the Iberian Pyrite Belt during the Variscan Orogeny. It provides new structural data, maps and cross sections from the eastern part of the Iberian Pyrite Belt. Regional geology of the South Portuguese Zone and lithostratigraphy of the Iberian Pyrite Belt are first briefly summarised. Three roughly homoaxial deformation phases are distinguished, and are mainly characterised by south-verging multi-order folds, axial planar cleavages and thrusts. Three structural units are distinguished: the La Puebla de Guzmán and Valverde del Camino antiforms are rooted units related to the propagation of southward-directed thrust systems that may branch onto the lower décollement level of the South Portuguese Zone; El Cerro de Andévalo is a structurally higher unit, mainly composed of allochthonous D1 thrust nappes. No evidence of sinistral transpression has been found in the transected cleavage and the strike of S3 with respect to S2. Better evidence of transpression is the moderately to steeply westerly plunging folds that show S-type asymmetry in down-plunge view. Variscan deformation in the Iberian Pyrite Belt is defined as the combination of a dominant southwards shear and a sinistral E-shear caused by oblique continental collision between the South Portuguese plate and the Iberian Massif.  相似文献   

14.
In the Central Zone of the Limpopo Belt (South Africa), Palaeoproterozoic granulite-facies metamorphism was superimposed on an earlier Archaean orogenic history. Previously determined ages of  2030–2020 Ma obtained from high-temperature chronometers (zircon, garnet, monazite) are generally thought to provide the best estimate of the peak of Palaeoproterozoic granulite-facies metamorphism in the Central Zone, whereas ages as young as  2006 Ma from late melt patches suggest that temperatures remained above the wet solidus for an extended period. We present a new MC-ICP-MS 207Pb–206Pb age of 2030.9 ± 1.5 Ma for titanite found in amphibolite- to greenschist-facies alteration zones developed adjacent to quartz vein systems and related pegmatites that cut a strongly deformed Central Zone metabasite. This age could potentially date cooling of rocks at this locality to temperatures below the wet solidus. Alternatively, the titanite could be inherited from the metabasite host, and the age determined from it date the peak of metamorphism. Integration of the geochronology with LA-ICP-MS trace element data for minerals from the metabasite, the hydrothermal vein systems and comparable rocks elsewhere shows that the titanite formed during the amphibolite-facies hydrothermal alteration, not at the metamorphic peak or during the greenschist-facies phase of veining. This suggests that high-grade rocks in the Central Zone have cooled differentially through the wet solidus, and provides timing constraints on when Palaeoproterozoic reworking in the Central Zone began. This study illustrates the potential of combined geochronological and high-resolution geochemical studies to accurately match mineral ages to distinct crustal processes.  相似文献   

15.
The Central Indian Tectonic Zone (CITZ) is a Proterozoic suture along which the Northern and Southern Indian Blocks are inferred to have amalgamated forming the Greater Indian Landmass. In this study, we use the metamorphic and geochronological evolution of the Gangpur Schist Belt (GSB) and neighbouring crustal units to constrain crustal accretion processes associated with the amalgamation of the Northern and Southern Indian Blocks. The GSB sandwiched between the Bonai Granite pluton of the Singhbhum craton and granite gneisses of the Chhotanagpur Gneiss Complex (CGC) links the CITZ and the North Singhbhum Mobile Belt. New zircon age data constrain the emplacement of the Bonai Granite at 3,370 ± 10 Ma, while the magmatic protoliths of the Chhotanagpur gneisses were emplaced at c. 1.65 Ga. The sediments in the southern part of the Gangpur basin were derived from the Singhbhum craton, whereas those in the northern part were derived dominantly from the CGC. Sedimentation is estimated to have taken place between c. 1.65 and c. 1.45 Ga. The Upper Bonai/Darjing Group rocks of the basin underwent major metamorphic episodes at c. 1.56 and c. 1.45 Ga, while the Gangpur Group of rocks were metamorphosed at c. 1.45 and c. 0.97 Ga. Based on thermobarometric studies and zircon–monazite geochronology, we infer that the geological history of the GSB is similar to that of the North Singhbhum Mobile Belt with the Upper Bonai/Darjing and the Gangpur Groups being the westward extensions of the southern and northern domains of the North Singhbhum Mobile Belt respectively. We propose a three‐stage model of crustal accretion across the Singhbhum craton—GSB/North Singhbhum Mobile Belt—CGC contact. The magmatic protoliths of the Chhotanagpur Gneisses were emplaced at c. 1.65 Ga in an arc setting. The earliest accretion event at c. 1.56 Ga involved northward subduction and amalgamation of the Upper Bonai Group with the Singhbhum craton followed by accretion of the Gangpur Group with the Singhbhum craton–Upper Bonai Group composite at c. 1.45 Ga. Finally, continent–continent collision at c. 0.96 Ga led to the accretion of the CGC with the Singhbhum craton–Upper Bonai Group–Gangpur Group crustal units, synchronous with emplacement of pegmatitic granites. The geological events recorded in the GSB and other units of the CITZ only partially overlap with those in the Trans North China Orogen and the Capricorn Orogen of Western Australia, indicating that these suture zones are not correlatable.  相似文献   

16.
New petrostructural data obtained during regional mapping allow the Odiennéregion to be divided into three domains. The western domain comprises a basal series of tholeiitic and komatiitic pillow metabasalts (≥1000 m) overlain by metasediments of oceanic affinity. The overlying younger volcanic complex of andesites, dacites and rhyolites with few interlayered metasediments, all ≥4000 m thick, is probably slightly older than 2.1 Ga, by comparison with adjacent areas. Trajectories of the steep metamorphic cleavage and lineations that formed during the regional tectonometamorphic event are parallel to magmatic foliations and lineations formed in plutons during the magmatic stage. First estimates of the synmetamorphic strain in conglomerates at T around 550°C suggest more than 50% of thinning of the series synchronous with a strong, mostly vertical elongation. The central domain comprises high temperature paragneisses derived from pelites and semipelites. Regional metamorphism culminated in metapelites with anatexis and the crystallisation of kinzigites (T = 700–800°C, P around 5 kbar), which may have formed only close to synmetamorphic mafic intrusives. The transpressive deformation produced a strong subhorizontal north-south elongation and relates to the initiation of the sinistral Sassandra Shear Zone, which comprises also bands of mylonites and ultramylonites formed later under the same stress field at decreasing temperatures. The eastern domain comprises siliciclastic and volcaniclastic metasediments with amphibolite facies metamorphism subjected to the same sinistral transpressive regime, anatectic conditions being reached close to the TieméBatholith. The three domains have been placed close together through the sinistral strike-slip motion along the Sassandra Shear Zone that splits into several branches north of Odienné. By comparison with southern Mali, these deformations, which are part of the Eburnian Orogeny, took place in this area between 2.10 and 2.07 Ga.  相似文献   

17.
周喜文  耿元生 《岩石学报》2009,25(8):1843-1852
贺兰山孔兹岩系作为华北克拉通西部孔兹岩带的重要组成部分,其变质时代问题一直悬而未决.利用SHRIMP锆石U-Pb定年技术,对贺兰山孔兹岩系中3个代表性富铝片麻岩(石榴堇青钾长片麻岩、石榴堇青二长片麻岩与石榴黑云斜长片麻岩)样品进行了精确定年.发现这3种岩石虽处不同层位,但其碎屑锆石年龄却非常集中,各测点207Pb/206Pb年龄总体变化在2.0~2.1Ga之间,加权平均年龄则在2017~2040Ma之间.这些碎屑锆石都具有岩浆结构特征,反映当时曾存在大规模花岗质岩浆活动,所成岩体为孔兹岩系沉积提供了充足物源.另有少量大于2.5Ga的碎屑锆石(2520~2949Ma),表明本区存在太古代岩浆活动记录.本区石榴堇青二长片麻岩中发育典型的变质增生锆石,其成因很可能与黑云母的脱水熔融反应有关.利用该锆石确定贺兰山孔兹岩系的变质时代为1950±8Ma.该时代与东部大青山、乌拉山孔兹岩系变质时代相同,表明华北克拉通西部的阴山地块与鄂尔多斯地块大体是以平行的方式正面拼贴到一起的,形成了目前的孔兹岩带.  相似文献   

18.
冀西北怀安地体高级变质表壳岩的锆石年代学研究   总被引:4,自引:3,他引:1  
蔡佳  刘平华  冀磊  施建荣 《岩石学报》2017,33(9):2811-2826
位于华北克拉通中部造山带中北段的怀安地体与内蒙孔兹岩带相接,出露高压麻粒岩和退变榴辉岩等多种高级变质岩,是洞悉华北克拉通古元古代构造演化历史的重要窗口。研究区变质表壳岩包括夕线石榴长英质片麻岩、石榴长英质粒状岩石以及紫苏黑云二长片麻岩。阴极发光图像特征显示研究区样品的锆石主要包括碎屑锆石和变质锆石,其中碎屑锆石具有岩浆结晶环带,而变质锆石为单颗粒或围绕着继承性碎屑锆石边部生长,内部结构均匀,Th/U比值较低。锆石LAICP-MS U-Pb定年结果与前人研究结果综合表明该区变质表壳岩石的碎屑锆石的207Pb/206Pb年龄主要集中在~2040Ma,其原岩形成时代与孔兹岩带变泥质岩石相近,均为~2.0Ga。变质锆石记录其变质时代为1957~1804Ma,结合前人对怀安地区变泥质岩和变基性岩变质作用和年代学研究结果,推测得出1.95~1.92Ga代表了峰期(高压)麻粒岩相变质时代,1.90~1.85Ga代表峰后减压阶段变质时代,而1.85~1.80Ga代表退变质晚期的时代。怀安地区变质岩石可能卷入了阴山陆块、鄂尔多斯陆块以及东部陆块间的先后碰撞造山过程,并持续较长时间(1.95~1.80Ga),最终拼贴为统一的整体。  相似文献   

19.
中天山地块南缘两类混合岩的成因及其地质意义   总被引:1,自引:1,他引:0  
王信水  江拓  高俊  高强  李继磊  张喜 《岩石学报》2019,35(10):3233-3261
中天山地块是位于中亚造山带西南缘的西天山造山带的重要组成块体,其基底演化和构造亲缘性对恢复西天山的增生造山方式和大地构造格局具有重要意义。混合岩在中天山地块的高级变质地体中广泛分布,是揭示中天山地块基底演化和构造属性的窗口。本文通过开展锆石U-Pb年代学和Hf同位素及岩石地球化学研究,确定了中天山地块南缘乌瓦门杂岩的两类条带状混合岩的原岩性质和形成时代以及混合岩化作用时代和成因机制。第一类条带状混合岩的原岩为中基性岩屑砂岩,混合岩化时代为~1. 8Ga,是在同期角闪岩相变质过程中通过变质分异形成的。第二类条带状混合岩的古成体包括黑云角闪斜长片麻岩和黑云斜长角闪片麻岩,原岩均形成于~2. 5Ga,并叠加~1. 8Ga角闪岩相变质作用,是洋陆俯冲背景下由俯冲洋壳或岩石圈地幔部分熔融形成。侵入古成体的变基性岩墙形成于~1. 72Ga,具有Fe-Ti玄武岩的地球化学特征,起源于后碰撞伸展背景下的软流圈地幔。该类混合岩的浅色体同时穿插古成体和变基性岩墙,呈现突变的野外接触关系,与区域内约787~785Ma混合岩化同期,即混合岩化作用是外来岩浆注入的结果,可能是造山带垮塌引发地壳深熔作用的产物。乌瓦门杂岩记录的~2. 5Ga岩浆活动、~1. 8Ga变质作用和~790Ma混合岩化作用可以和塔里木北缘进行对比,暗示中天山地块是一个具有确切新太古代-古元古代结晶基底的微陆块,并且和塔里木克拉通存在构造亲缘性。  相似文献   

20.
A new mechanism is suggested for the generation of the interference fold pattern which characterizes the Limpopo Mobile Belt. The mechanism is directly related to shear movement along the Tuli-Sabi Shear Zone, renamed the Tuli-Sabi Straightening Zone. The mobile belt is regarded as a taphrogenic lineament (McConnell, 1974) and its generation is compatible with the tectonic environment active in Proterozoic times according to Sutton and Watson (1974). Field evidence shows that the Tuli-Sabi Straightening Zone dies out in Botswana at Moshakabela, and it is reasoned that the mobile belt as a whole also disappears in this vicinity. It does not extend into central and western Botswana beneath the Karroo and Kalahari cover. Detailed examination of ERTS-1 imagery of northeastern Botswana strengthens these deductions. The Tuli-Sabi Straightening Zone and the characteristic fold patterns of the mobile belt can be seen quite clearly on the satellite imagery. Furthermore, the Tuli-Sabi Straightening Zone appears to be displaced southwards at the international boundary between Botswana and Rhodesia. The existence of a fold belt trending about N150° superimposed on the Limpopo Mobile Belt in the west of the area is postulated which is not the Shashe Mobile Belt (Crockett, 1967).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号