首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified three possible ways in which future XMM‐Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X‐ray transient Cen X‐4 in quiescence one can use the RGS spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X‐ray spectral fitting of the pn and MOS spectra and allows us to investigate whether the variability observed in the quiescent X‐ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in NH. This will test whether the soft thermal spectral component can indeed be due to the hot thermal glow of the neutron star. Potentially such an observation could also reveal redshifted spectral lines from the neutron star surface. Second, XMM‐Newton observations of radius expansion type I Xray bursts might reveal redshifted absorption lines from the surface of the neutron star. Third, XMM‐Newton observations of eclipsing quiescent low‐mass X‐ray binaries provide the eclipse duration. With this the system inclination can be determined accurately. The inclination determined from the X‐ray eclipse duration in quiescence, the rotational velocity of the companion star and the semi‐amplitude of the radial velocity curve determined through optical spectroscopy, yield the neutron star mass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this article I will highlight selected results from XMM‐Newton observations of stellar coronae, emphasizing the specific XMM‐Newton capabilities in terms of high‐resolution spectroscopy, its long‐look capability and its optical monitor. I will focus on results on “normal”, cool stars and present science areas hitherto largely unexploired by XMM‐Newton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
To investigate the transient nature of supersoft sources (SSSs) in M 31, we compared SSS candidates ofthe XMM‐Newton Deep Survey, ROSAT PSPC surveys and the Chandra catalogues in the same field. We found 40 SSSs in the XMM‐Newton observations. While 12 of the XMM‐Newton sources were brighter than the limiting flux of the ROSAT PSPC survey, only two were detected with ROSAT ∼10 yr earlier. Five correlate with recent optical novae which explains why they were not detected by ROSAT. The remaining 28 XMM‐Newton SSSs have fluxes below the ROSAT detection threshold. Nevertheless we found one correlation with a ROSAT source, which had significantly larger fluxes than during the XMM‐Newton observations. Ten of the XMM‐Newton SSSs were detected by Chandra with <1– ∼6yr between the observations. Five were also classified as SSSs by Chandra. Of the 30 ROSAT SSSs three were confirmed with XMM‐Newton, while for 11 sources other classifications are suggested. Of the remaining 16 sources one correlates with an optical nova. Of the 42 Chandra very‐soft sources five are classified as XMM‐Newton SSSs, while for 22 we suggest other classifications. Of the remaining 15 sources, nine are classified as transient by Chandra, one of them correlates with an optical nova. These findings underlined the high variability of the sources of this class and the connection between SSSs and optical novae. Only three sources, were detected by all three missions as SSSs. Thus they are visible for more than a decade, despite their variability (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A brief overview of some highlights of high spectral resolution X‐ray observations of AGN is given, mainly obtained with the RGS of XMM‐Newton. Future prospects for such observations with XMM‐Newton are given. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
《Astronomische Nachrichten》2017,338(2-3):256-261
This article provides a summary of XMM ‐Newton highlights on stellar tidal disruption events. First found with ROSAT , ongoing and upcoming sky surveys will detect these events in the thousands. In X‐rays, tidal disruption events (TDEs ) provide us with powerful new probes of accretion physics under extreme conditions and on short timescales and of relativistic effects near the super‐massive black holes (SMBHs) , of the formation and evolution of disk winds near or above the Eddington limit, and of the processes of high‐energy emission from newly launched radio jets. TDEs serve as signposts of the presence of dormant single black holes at the cores of galaxies, and of binary black holes as well, since TDE lightcurves are characteristically different in the latter case. XMM ‐Newton has started to contribute to all of these topics, and a rich discovery space is opening up in the next decade.  相似文献   

6.
First studies of the X‐ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM‐Newton observations led to a better knowledge of the X‐ray source population. An XMM‐Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2–4.5 keV luminosity of 1035 erg s–1. EPIC hardness ratios as well as informations from earlier X‐ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X‐ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as “hard”. These sources may either be XRBs or Crab‐like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X‐ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM‐Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X‐ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In recent work it was demonstrated that narrow‐line Seyfert 1 galaxies, which possessed spectral complexity in the 2–10 keV band were at the same time X‐ray weak. In this contribution I show how X‐ray weakness can be understood in the context of reflection and light bending picture. In fact, X‐ray weakness should be expected from objects that are in a reflection dominated state. With simultaneous UV and X‐ray data available with most XMM‐Newton observations, an estimate of the X‐ray weakness is relatively straightforward. As such, it is an easy way to substantiate conclusions of reflection dominated spectra, and we use this method to examine recent claims. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Both Chandra and XMM‐Newton have performed long look programs for studying the YSO physics. I will discuss recent results on the controversial issue of Class 0 YSO X‐ray emission, the observational evidence of magnetic funnels interconnecting the YSO with its circumstellar disk and the Fe 6.4 keV fluorescent line emission and its origin. While recent results of the XMM‐Newton DROXO program challenge the “standard” interpretation of the Fe 6.4 kev line origin as due to photoionized fluorescing disk material, the discovery of X‐ray excited Ne 12.81 μ m line is a clear evidence of the interaction between X‐rays and disk material. Future long look observations with XMM‐Newton are required to clarify the X‐ray effects on YSO disk. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Charge‐exchange (CE) emission produces features which are detectable with the current X‐ray instrumentation in the brightest near galaxies. We describe these aspects in the observed X‐ray spectra of the star forming galaxies M82 and NGC 3256, from the Suzaku and XMM‐Newton telescopes. Emission from both ions (O, C) and neutrals (Mg, Si) is recognised. We also describe how microcalorimeter instrumentation on future missions will improve CE observations (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The Planck Satellite will survey the entire sky in 9 millimeter/submillimeter bands and detect thousands of galaxy clusters via their thermal Sunyaev‐Zel'dovich (SZ) effect. The unprecedented volume of the survey will permit the construction of a unique catalog of massive clusters out to redshifts of order unity. We describe the expected contents of this catalog and use an empirical model of the intra‐cluster gas to predict the X‐ray properties of Planck SZ clusters. Using this information we show how a ∼10 Ms follow‐up program on XMM‐Newton could increase by ∼100‐fold the number of clusters with measured temperatures in the redshift range z = 0.5–1. Such a large sample of well‐studied massive clusters at these redshifts would be a powerful cosmological tool and a significant legacy for XMM‐Newton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
I discuss open questions regarding accreting black holes in binary systems, focusing on two questions: can we measure the spins of black holes and what is the nature of the ultraluminous X‐ray sources. XMM‐Newton could make significant strides in answering these questions and others over the next ten years. I suggest two observational programs designed to help increase our understanding of accreting black holes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The presentations made at the workshop “XMM‐Newton: The Next Decade”, held at ESAC from 4th to the 6th of July 2007, contained an overwhelming amount of new results and well justified scientific questions that can be addressed by observations with XMM‐Newton. XMM‐Newton has over the next decade a solid scientific case. Given the high impact of X‐ray observations, XMM‐Newton operations are not only a matter for “X‐ray astrophysics”, but also of fundamental importance for astrophysics in general. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
With the launch of XMM‐Newton in 1999, two Narrow‐Line Seyfert 1 Galaxies (NLS1s) have been detected (IRAS 13224–3809 and 1H 0707–495) showing sharp spectral drops at energies equal or above the neutral Fe K edge at 7.1 keV without any narrow Fe K reemission. In this paper I summarize our present knowledge on the observed properties of sharp high‐energy spectral drops. I list the problems presently arising from the reflection dominated and the optically thick disc models. Finally, I present an alternative solution which consists of a combination of the accretion disc model and the reflection dominated model. This might solve the problems of the standard accretion disc model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The first supersoft source (SSS) identification with an optical nova in M 31 was based on ROSAT observations. Twenty additional X‐ray counterparts (mostly identified as SSS by their hardness ratios) were detected using archival ROSAT, XMM‐Newton and Chandra observations obtained before July 2002. Based on these results optical novae seem to constitute the major class of SSS in M 31. An analysis of archival Chandra HRC‐I and ACIS‐I observations obtained from July 2004 to February 2005 demonstrated that M 31 nova SSS states lasted from months to about 10 years. Several novae showed short X‐ray outbursts starting within 50 d after the optical outburst and lasting only two to three months. The fraction of novae detected in soft X‐rays within a year after the optical outburst was more than 30%. Ongoing optical nova monitoring programs, optical spectral follow‐up and an up‐to‐date nova catalogue are essential for the X‐ray work. Re‐analysis of archival nova data to improve positions and find additional nova candidates are urgently needed for secure recurrent nova identifications. Dedicated XMM‐Newton/Chandra monitoring programs for X‐ray emission from optical novae covering the centre area of M 31 continue to provide interesting new results (e.g. coherent 1105 s pulsations in the SSS counterpart of nova M31N 2007‐12b). The SSS light curves of novae allow us – together with optical information – to estimate the mass of the white dwarf, of the ejecta and the burned mass in the outburst. Observations of the central area of M 31 allow us – in contrast to observations in the Galaxy – to monitor many novae simultaneously and proved to be prone to find many interesting SSS and nova types (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present X‐ray spectral analysis of the super‐soft source CAL87 using ASCA, Chandra, XMM‐Newton observations. Early ASCA CCD spectrum reported a strong oxygen absorption edge, which is considered to originate in the an optically thick white‐dwarf atmosphere. On the other hand, contemporaneous grating observations by Chandra and XMM‐Newton indicate emission line dominated spectra, which obviously indicate the optically thin origin. Fitting all the available CCD (ASCA and XMM‐Newton) and grating spectra (XMM‐Newton and Chandra) simultaneously, we show that the CAL87 X‐ray energy spectrum is in fact composed of both an optically thick component with deep absorption edges and an optically thin component with numerous emission lines. The current result supports the standard SSS model that the primary source of X‐ray emission is nuclear burning in the white dwarf atmosphere, surrounded by a highly photoionised, optically thin corona (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present a spatial analysis of the soft X‐ray and Hα emissions from the outflow of the starburst galaxy M82. We find that the two emissions are tightly correlated on various scales. The O VII triplet of M82, as resolved by X‐ray grating observations of XMM‐Newton, is dominated by the forbidden line, inconsistent with the thermal prediction. The O VII triplet also shows some spatial variations. We discuss three possible explanations for the observed O VII triplet, including the charge exchange at interfaces between the hot outflow and neutral cool gas, a collisional non‐equilibrium‐ionization recombining plasma, and resonance scattering (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Iron line emission is common in the X‐ray spectra of accreting black holes. When the line emission is broad or variable then it is likely to originate from close to the black hole. X‐ray irradiation of the accretion flow by the power‐law X‐ray continuum produces the X‐ray ‘reflection’ spectrum which includes the iron line. The shape and variability of the iron lines and reflection can be used as a diagnostic of the radius, velocity and nature of the flow. The inner radius of the dense flow corresponds to the innermost stable circular orbit and thus can be used to determine the spin of the black hole. Studies of broad iron lines and reflection spectra offer much promise for understanding how the inner parts of accretion flows (and outflows) around black holes operate. There remains great potential for XMM‐Newton to continue to make significant progress in this work. The need for high quality spectra and thus for long exposure times is paramount. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
This paper shows that our understanding of the statistical properties of X‐ray selected normal galaxies (e.g. X‐ray luminosity function) can be significantly improved by combining a wide‐area XMM‐Newton survey with the moderare resolution and high S/N optical spectroscopy of the SDSS. Such a combined dataset has the potential to minimise uncertainties that affect existing normal galaxy samples at X‐rays, such as small number statistics, cosmic variance, AGN contamination and incompleteness at bright X‐ray luminosities. It is demonstrated that a 100 deg2 XMM‐Newton survey in the SDSS area to the limit fX(0.5–2 keV) ≈ 5 × 10–15 erg cm–2 s–1 will detect over 400 X‐ray selected normal galaxies with excellent control over systematic biases, thereby providing tight contraints on the X‐ray luminosity function at z ≈ 0.1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Important results achieved over the last years on supernova remnants, planetary nebulae and superbubbles are briefly reviewed in the context of X‐ray observations. I intend to review the important open scientific questions in these fields, and the specific contributions that can be made by XMM‐Newton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号