首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbiota of the upper Viséan (Asbian–Brigantian) rocks in the Lough Allen Basin in northwest Ireland is analysed. The Middle Mississippian sequence studied extends from the upper part of the Dartry Limestone/Bricklieve Limestone formations of the Tyrone Group to the Carraun Shale Formation of the Leitrim Group. The rocks have been traditionally dated by ammonoid faunas representing the B2a to P2c subzones. The Meenymore Formation (base of the Leitrim Group) also contains conodont faunas of the informal partial‐range Mestognathus bipluti zone. The upper Brigantian Lochriea nodosa Conodont Zone was recognized by previous authors in the middle of the Carraun Shale Formation (Ardvarney Limestone Member), where it coincides with upper Brigantian ammonoids of the Lusitanoceras granosus Subzone (P2a). Foraminifera and algae in the top of the Dartry Limestone Formation are assigned to the upper Cf6γ Foraminifera Subzone (highest Asbian), whereas those in the Meenymore Formation belong to the lower Cf6δ Foraminifera Subzone (lower Brigantian). The Dartry Limestone Formation–Meenymore Formation boundary is thus correlated with the Asbian–Brigantian boundary in northwest Ireland. For the first time, based on new data, a correlation between the ammonoid, miospore, foraminiferan and conodont zonal schemes is demonstrated. The foraminiferans and algae, conodonts and ammonoids are compared with those from other basins in Ireland, northern England, and the German Rhenish Massif. Historically, the Asbian–Brigantian boundary has been correlated with several levels within the P1a Ammonoid Subzone. However, the new integrated biostratigraphical data indicate that the Asbian–Brigantian boundary in northwest Ireland is probably located within the B2a Ammonoid Subzone and the NM Miospore Zone, but the scarcity of ammonoids in the Tyrone Group precludes an accurate placement of that boundary within this subzone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian–Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. (1) An Holkerian to lower Asbian unit of skeletal peloidal and bryozoan bedded limestone. (2) Lower Asbian unit of massive light grey Koninckopora‐rich limestone, representing a shallower marine facies. (3) Upper Asbian terraced limestone unit with minor shallowing‐upward cycles of poorly bedded Kamaenella‐rich limestone with shell bands and palaeokarst features. This unit is very similar to other cyclic sequences of late Asbian age in southern Ireland and western Europe, suggesting a glacio‐eustatic origin for this fourth‐order cyclicity. (4) Lower Brigantian unit with cyclic alternations of crinoidal/bryozoan limestone and peloidal limestone with coral thickets. These cycles lack evidence of subaerial exposure. (5) Lower Brigantian bedded cherty dark grey limestone unit, deposited during the maximum transgressive phase of the Brigantian. (6) Lower to upper Brigantian unit mostly comprising cyclic bryozoan/crinoidal cherty limestone. In most areas this youngest unit is truncated and unconformably overlain by Serpukhovian siliciclastic rocks. Deepening enhanced by platform‐wide subsidence strongly influenced later Brigantian cycle development in Ireland, but localized rapid shallowing led to emergence at the end of the Brigantian. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian–Brigantian formation boundary is recognized by the presence of upper Asbian Cf6γ Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6δ Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A thick sequence of late Dinantian (Asbian–Brigantian) carbonates crop out in the Buttevant area, North Co. Cork, Ireland. A mud-mound unit of early Asbian age (the Hazelwood Formation) is the oldest unit described in this work. This formation is partly laterally equivalent to, and is overlain by, over 500 m of bedded platform carbonates which belong to the Ballyclogh and Liscarroll Limestone Formations. Four new lithostratigraphic units are described within the platform carbonates: (i) the early Asbian Cecilstown Member and (ii) the late Asbian Dromdowney Member in the Ballyclogh Limestone Formation; (iii) the Brigantian Templemary Member and (iv) the Coolbane Member in the Liscarroll Limestone Formation. The Cecilstown Member consists of cherty packstones and wackestones that are inferred to have been deposited below fair-weather wavebase. This unit overlies and is laterally equivalent to the mud-mound build-up facies of the Hazelwood Formation. The Dromdowney Member is typified by cyclic-bedded kamaenid-rich limestones possessing shell bands, capped by palaeokarst surfaces, with alveolar textures below and shales above these surfaces. The carbonates of this unit were deposited at or just below fair-weather wavebase, the top of each cycle culminated in subaerial emergence. The Templemary Member consists of cyclic alternations of subtidal crinoidal limestones capped by subtidal lagoonal crinoid-poor, peloidal limestones possessing coral thickets. Intraclastic cherty packstones and wackestones characterize the Coolbane Member, which is inferred to have been deposited below fair-weather wavebase but above storm wavebase. The early Asbian Cecilstown Member has a relatively sparse micro- and macrofauna, typified by scattered Siphonodendron thickets, archaediscids at angulatus stage and common Vissariotaxis. Conversely, macro- and microfauna is abundant in the late Asbian Dromdowney Member. Typical late Asbian macrofossils include the coral Dibunophyllum bipartitum and the brachiopod Davidsonina septosa. The base of the late Asbian (Cf6γ Subzone) is recognized by the first appearance of the foraminifers Cribrostomum lecompteii, Koskinobigenerina and the alga Ungdarella. The Cf6γ Subzone can be subdivided into two biostratigraphic divisions, Cf6γ1 and Cf6γ2, that can be correlated throughout Ireland. Relatively common gigantoproductid brachiopods and the coral Lonsdaleia duplicata occur in the Brigantian units. The base of the Brigantian stage (Cf6δ Subzone) is marked by an increase in the abundance of stellate archaediscids, the presence of Saccamminopsis-rich horizons, Loeblichia paraammonoides, Howchinia bradyana and the rarity of Koninckopora species. Changes in facies at the Cecilstown/Dromdowney Member and the Ballyclogh/Liscarroll Formation boundaries coincide closely with the changes in fossil assemblages that correspond to the early/late Asbian and the Asbian/Brigantian boundaries. These facies changes are believed to reflect major changes in relative sea-level on the Irish platforms. The sea-level variations that are inferred to have caused the facies changes at lithostratigraphic boundaries also brought in the new taxa that define biostratigraphic boundaries. Moreover, many of the Dinantian stage boundaries that are defined biostratigraphically in Great Britain, Belgium and the Russian Platform also coincide with major facies boundaries caused by regressive and transgressive episodes. The integration of detailed biostratigraphic analyses with facies studies will lead to better stratigraphic correlations of Dinantian rocks in northwest Europe. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
The upper Viséan–Serpukhovian strata in the type region for the Serpukhovian Stage is an epeiric‐sea succession ca. 90 m in thickness. The predominantly Viséan Oka Group (comprising the Aleksin, Mikhailov, and Venev formations) is dominated by photozoan packstones with fluvial siliciclastic wedges developed from the west. The Lower Serpukhovian Zaborie Group is composed of the Tarusa and Gurovo formations. The latter is a new name for the shale‐dominated unit of Steshevian Substage age in the studied area. The Zaborie Group is composed of limestones and marls in its lower (Tarusa and basal Gurovo) part and black smectitic to grey palygorskitic shales in the main part of the Gurovo Formation. The Gurovo Formation is capped by a thin limestone with oncoids and a palygorskitic–calcretic palaeosol. The Upper Serpukhovian is composed of a thin (3–12 m) Protva Limestone heavily karstified during a mid‐Carboniferous lowstand. The succession shows a number of unusual sedimentary features, such as a lack of high‐energy facies, shallow‐subtidal marine sediments penetrated by Stigmaria, the inferred atidal to microtidal regime, and palustrine beds composed of saponitic marls. The succession contains many subaerial disconformities characterized by profiles ranging from undercoal solution horizons to palaeokarsts. Incised fluvial channels are reported at two stratigraphic levels to the west of the study area. The deepest incisions developed from the Kholm Disconformity (top of the Mikhailov Formation). This disconformity also exhibits the deepest palaeokarst profile and represents the major hiatus in the Oka–Zaborie succession. The new sea‐level curve presented herein shows two major cycles separated by the Kholm Unconformity at the Mikhailov/Venev boundary. The Lower Serpukhovian transgression moved the base‐level away from falling below the seafloor so that the section becomes conformable above the Forino Disconformity (lower Tarusa). The maximum deepening is interpreted to occur in the lower dark‐shale part of the Gurovo Formation. The base of the Serpukhovian Stage is defined by FADs of the conodont Lochriea ziegleri and the foraminifer Janischewskina delicata in the middle of the sequence VN2. The Aleksinian–Mikhailovian interval is provisionally correlated with the Asbian (Lower–Middle Warnantian) in Western Europe. Based on FODs of Janischewskina typica and first representatives of Climacammina, the Venevian is correlated with the Brigantian in Western Europe. The Tarusian–Protvian interval contains diverse fusulinid and conodont assemblages, but few forms suitable for international correlation. FADs of the zonal conodont species Adetognathus unicornis and Gnathodus bollandensis at several metres above the Protvian base suggest correlation of the entire Zaborie Group and may be the basal Protvian to the Pendleian. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The ‘Calcaires à Productus’ of the Montagne Noire are microbial build-ups. Two formations are defined and dated respectively as Uppermost Visean (Upper Warnantian–Brigantian) and Serpukhovian on the basis on corals. That makes these limestones out to be younger than previously stated (Lower and base of Upper Warnantian–Asbian and base of Brigantian) and indicates that the development of the olistoliths and thrusts including them, due to the Variscan orogeny, was at least as young as the Upper Serpukhovian. The Serpukhovian limestones of the Montagne Noire are correlated with the Lanet Limestone (Mouthoumet Massif, Corbières) and Ardengost Limestone (central Pyrenees). To cite this article: É. Poty et al., C. R. Geoscience 334 (2002) 843–848.  相似文献   

6.
A detailed study of foraminiferal assemblages recorded in limestones from northern England in the Stainmore Trough and Alston Block permits their assignment to different European substages than in previous studies. Comparisons with foraminiferal assemblages, mostly from Russia, allow the biozonations to be correlated with the Viséan, Serpukhovian and Bashkirian international stages, as well as with the Russian (and Ukrainian) substages for the Serpukhovian (Tarussian, Steshevian, Protvian and Zapaltyubian). The Scar Limestone and Five Yard Limestone Members are assigned to the Tarussian and, thus, represent the lowermost part of the formal Serpukhovian Stage. This new correlation coincides closely with the first occurrence of the conodont Lochriea ziegleri from levels equivalent to the Single Post Limestone that could potentially form the revised base for the Serpukhovian. The Three Yard Limestone Member is correlated with the base of the Steshevian substage which also includes the Four Fathom Limestone Member, Great Limestone Member and Little Limestone. The base of the Protvian is considered to lie within the Crag Limestone, whereas the Rookhope Shell Band contains foraminiferal assemblages more typical of the Zapaltyubian in the Ukraine and Chernyshevkian in the Urals. Assemblages of the Upper Fell Top Limestone and Grindstone/Botany Limestones contain foraminiferal species that have been used for the recognition of the Bashkirian elsewhere. There is no other fossil group which allows the calibration of those foraminiferal assemblages, because ammonoids are virtually absent in the shallow‐water cyclothemic successions and conodonts have not been studied in detail in this region. The Mid‐Carboniferous boundary and the Voznessenian substage might be reasonably located below the Upper Fell Top Limestone. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The stratigraphy of the upper Viséan (Asbian to Brigantian) carbonate succession in southeast Ireland is revised on the basis of seven quarry and two borehole sections. Six lithological units have been distinguished, two units (units 1 and 2) in the upper Asbian Ballyadams Formation, and four units (units 4 to 6) in the Brigantian Clogrenan Formation (both formations are dated precisely using foraminiferans, calcareous algae and rugose corals). The boundary between the Ballyadams and Clogrenan formations is redefined 19 m below the horizon proposed by the Geological Survey of Ireland, and thus, lithological characteristics of both formations are redescribed. The upper part of the Ballyadams Formation is characterized by well‐developed large‐scale cyclicity, with common subaerial exposure surfaces. Fine‐ to medium‐grained thin‐bedded limestones with thin shales occur in the lower part of cycles, passing up into medium‐grained pale grey massive limestones in the upper part. The Clogrenan Formation is composed mainly of medium‐ to coarse‐grained thick limestone beds with variable presence of shales; but no large‐scale cyclicity. There is a decrease in the number of subaerial exposure surfaces towards the top of the formation and common chert nodules; macrofauna occurs mostly concentrated in bands. The six units recognized in the Carlow area are comparable with other units described for the same time interval (Asbian–Brigantian) from south and southwest Ireland, demonstrating the existence of a stable platform for most parts of southern Ireland, controlled principally by glacioeustatics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The early Carboniferous series of the Adarouch area (northeast central Morocco) are subdivided into three sedimentological and biostratigraphical units. The first unit, which belongs to the Late Visean zones V3bβ and V3bγ, was deposited on shallow carbonate platforms. The second unit belongs to the Late Visean zone, V3c, and incudes terrigenous deposits, such as turbidites, shales and olistostromes. The third unit belongs to the Serpukhovian stage and consists of sandstones and limestones. A new biostratigraphical analysis, which is based on foraminiferal, algae and pseudoalgae, allows an accurate dating of the units. The deposits of the zones V3bβ and V3bγ contain characteristic calcareous microfossils, such as Stacheoides sp., Pseudoendothyra sp. and Ungdarella uralica. The V3c zone (300–400 m) is shown in two oolitic beds of the Mouarhaz and Akerchi Formations, respectively, with Janischewskina sp. and Asteroarchaediscus sp. The Serpukhovian stage is characterised by the disappearance of the algae Koninckopora and the appearance of the brachiopod Titanaria. The new data from the Adarouch area confirm the Moroccan biostratigraphical scale of the Moroccan meseta.  相似文献   

9.
The Verkhnyaya Kardailovka section is one of the best candidates for the GSSP (Global Stratotype Section and Point) at the base of the Stage (Mississippian). For boundary definition, the first appearance of the conodont Lochriea ziegleri Nemirovskaya, Perret et Meischner, 1994 in the lineage Lochriea nodosa (Bischoff, 1957)?L. ziegleri is used. L. ziegleri appears in the Venevian Substage somewhat below the base of the Serpukhovian in the Moscow Basin. The position of the FAD of L. ziegleri within the Hypergoniatites?Ferganoceras Genozone is confirmed and lies between 19.53 and 19.63 m above the section’s base. Before 2010, deep-water stylonodular limestone containing the boundary in unnamed formation C at Kardailovka was well exposed but only 3 m of Viséan strata cropped out immediately below. Recent trenching exposed another 10 m of underlying Viséan carbonates in formation C and older Viséan siliciclastics and volcanics in unnamed formation B. The contact between formation B and underlying crinoidal limestones in unnamed formation A representing the middle Viséan Zhukovian (Tulian) regional Substage was excavated. The boundary succession, situated in the Magnitogorsk tectonic zone above the Devonian Magnitogorsk arc and Mississippian magmatic and sedimentary rift succession, was deposited west of the Kazakhstanian continent during closure of the Ural Ocean. In the lower part of the section, Viséan tuffaceous siliciclastics and volcanics of formation B record rapid deepening after deposition of neritic middle Viséan crinoid lime grainstone of formation A and subsequent subaerial exposure. The overlying condensed upper Viséan to Serpukhovian succession in formation C comprises deep-water limestone deposited in a sediment-starved basin recording minor turbidite influx and carbonate-mound development. The δ13Ccarb plot shows a positive shift of 1‰ V-PDB (from +2 to +3‰) between 17.0 and 17.75 m (3.05 and 1.97 m below FAD L. ziegleri). The δ18Oapatite graph displays a prominent upward shift from 19.9 to 21.1‰ V-SMOW (at 19.15 to 19.51 m) in the nodosa Zone below FAD of Lochriea ziegleri.  相似文献   

10.
The Carboniferous succession in the Tindouf Basin of southern Morocco, North Africa, displays Mississippian to Early Pennsylvanian marine beds, followed by Pennsylvanian continental deposits. The marine beds comprise a shallow water cyclic platform sequence, dominated by shales and fine‐grained sandstones with thin but laterally persistent limestone/dolostone beds. Foraminiferal assemblages have been studied in the limestone beds in several sections from the Djebel Ouarkziz range in the northern limb of the Tindouf Syncline; they indicate that the age of the limestones range from late Asbian (late Viséan) to Krasnopolyanian (early Bashkirian). The foraminiferal assemblages are abundant and diverse, and much richer in diversity than those suggested by previous studies in the region, as well as for other areas of the western Palaeotethys. The richest assemblages are recorded in the Serpukhovian but, unusually, they contain several taxa which appear much earlier in Western European basins (in the latest Viséan). In contrast, conodont assemblages are scarce due to the shallow‐water facies, although some important taxa are recorded in the youngest limestones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Despite the importance of south Cumbrian sections for the Arundian–Holkerian (mid Viséan) boundary, beyond the stratotype proposed at Barker Scar in 1976, little else is known regionally about this boundary and its relationship to adjacent formations. We re-evaluate the Dalton Formation, making its upper and lower boundaries regionally more consistent and precisely-defined, in good quality outcrops with associated biostratigraphy. The Dalton Formation is formally divided into the Blackstone Member and overlying Raven's Member. Rich foraminiferal assemblages of the Cf4δ subzone are recognized in the Blackstone Member and the lower to mid Raven's Member in nine sections. The Cf4γ–Cf4δ boundary is recognized in the underlying Red Hill Limestone Formation in 3 sections. The upper part of the Raven's Member shows the first appearance of taxa assigned to the Cf5α and Cf5β subzones of the Holkerian in three of the sections. Bentonitic shales in the mid and upper-most part of the Raven's Member were evaluated for zircon and apatite geochronology, although only 4 out of 504 analyses yielded Carboniferous ages, indicating an almost entirely detrital source. This detritus was northerly or northeasterly-derived and predominantly from the Southern Uplands Terrane with subsidiary input from the Lewisian Complex or eastern Greenland sources. Petrographic analysis identified 13 microfacies indicating that the Dalton Formation represents the inner to outer part of a southward inclined shelf, in which east–west changes in microfacies were generated by synsedimentary faulting inherited from northwest–southeast aligned basement structures.  相似文献   

12.
A Lower Carboniferous platform sedimentary sequence (the Paprotnia Beds) in the Bardo Unit of the central Sudetes (NE part of the Bohemian Massif, SW Poland) is biostratigraphically well dated, based on rich macro- and micro-fossil evidence, as Late Viséan (late Asbian, crenistria, Go III α zone). The beds contain several bentonite layers, one of which was dated using the U–Pb SHRIMP method on volcanic zircons and yielded an age of 334 ± 3 Ma. This date fits well to the recently established chronostratigraphic limits of the Viséan, and is consistent with the newest isotopic age constraints of 336.5–332 Ma for the Asbian boundaries.  相似文献   

13.
The Eyam Limestone Formation of Steeplehouse Quarry, Wirksworth, Derbyshire, UK yields a diverse assemblage of Lower Carboniferous vertebrate remains. The assemblage is dominated by dermal denticles of the enigmatic selachian Petrodus patelliformis M’Coy, 1848, but also contains teeth of petalodonts, hybodonts and neoselachians. Actinopterygian remains also occur. The assemblage has yielded the earliest Neoselachian, Cooleyella fordi (Duffin and Ward, 1983) and the earliest British lonchidiid, Reesodus wirksworthensis (Duffin 1985). The first occurrence of the enigmatic spiny shark Acanthorhachis (Listracanthidae) is reported from the Viséan, extending its range back some 10 million years. Associated invertebrate remains and sedimentological data indicates a thriving fore-reef environment, deposited in a low energy off-reef setting. The vertebrate remains are well preserved with little abrasion, indicating short transport distances. Conodont elements indicating a late Brigantian age (Early Carboniferous, Viséan) have unusual and extensive euhedral apatite overgrowths.  相似文献   

14.
Section of the middle and upper Volgian substages and basal Boreal Berriasian in the Cape Urdyuk-Khaya (Nordvik Peninsula) is largely composed of dark argillites substantially enriched in Corg. Characteristic of the section is a continuous succession of ammonite, foraminiferal, ostracode, and dinocyst zones known also in the other Arctic areas. Boundaries of the upper Volgian Substage are recognizable only based on biostratigraphic criteria. The succession of the middle Volgian Taimyrosphinctes excentricus to basal Ryazanian Hectoroceras kochi zones is characterized. The range of the substage is revised. The lower Exoticus Zone, where ammonites characteristic of the Nikitini Zone upper part in the East European platform have been found, is referred to the middle Volgian Substage. Newly found ammonites are figured. Two possible positions of the Jurassic-Cretaceous boundary in the Arctic region, i.e., at the lower and upper boundaries of the Chetae Zone at the top of the upper Volgian Substage, are discussed.  相似文献   

15.
 The interval spanning the Paleocene–Eocene (P/E) transition in the Possagno section consists of 1 m of red marls, including a 4-cm-thick, dark-red "dissolution" clay, which represents the Paleocene/Eocene boundary event. The Possagno section is much more condensed than other Tethyan and North Atlantic sections previously studied; however, in this section the most significant biotic, isotopic and sedimentological events across the P/E boundary can be recognized. The Possagno section spans the following planktic foraminiferal subzones: upper part of M. gracilis Subzone, A. berggreni Subzone, A. sibaiyaensis Subzone and probably lowermost part of P. wilcoxensis Subzone. The quantitative analysis indicates a major increase of low-latitude acarininids, including compressed tropical acarininids just above the boundary clay. This acarininid incursion begins just below the boundary clay but reaches its maximum just above the clay. The planktic foraminiferal faunal turnover is gradual except for the acarininid incursion. The isotopic results show a negative excursion in ∂13C values at the small benthic foraminifera mass extinction event. The acarininid maximum diversity coincides with this isotopic excursion, and reflects an increase in surface seawater temperature. Despite being very condensed, the Possagno section allows us to further confirm that the different biotic, isotopic and sedimentological events recognized in the Spanish sections (Alamedilla, Campo, Caravaca, Zumaya) are not local in nature and allows the establishment of a detailed chronostratigraphic framework to define the P/E boundary stratotype. Received: 8 April 1998 / Accepted: 12 April 1999  相似文献   

16.
Calcareous microflora occur commonly in the early Serpukhovian (late Mississippian) rocks from the Guadiato Area (southwestern Spain) despite the fact that this area contains mostly siliciclastic sediments. The microflora recorded in the carbonate beds is regarded as representative of both relatively deep‐water and shallow‐water facies and can be compared with the slope and shelf facies environments distinguished in the Guadiato Area. Up to 45 algal taxa have been identified in the carbonate beds, of which 26 taxa occur in the relatively deep‐water assemblages, whereas the shallow‐water assemblages are composed of up to 43 taxa. The entire algal assemblage is dominated by calcifoliids, common cyanobacteria and incertae sedis, but the shallow‐water assemblages contain more commonly dasyclads, red algae and aoujgaliids. Most of these taxa are present, but poorly known, in other Serpukhovian carbonate platforms in the western Palaeotethys. Some algae (Hortonella uttingii, Kamaenella tenuis and Koninckopora inflata), usually regarded as being restricted to the Viséan, have been found in Serpukhovian rocks in the Guadiato Area, and also in Algeria, thus their stratigraphic ranges might be extended up to the Serpukhovian. Other important taxa include: Archaeolithophyllum, Cabrieropora, Calcifolium, Falsocalcifolium, Fourstonella, Frustulata, Kulikia, Neoprincipia and ‘Windsoporella’, which are exceptionally recorded in Serpukhovian rocks, or not recorded at all, because they are typically recorded in the Pennsylvanian (cf. Clavaporella), although some of them show earlier occurrences in Viséan rocks (Claracrusta, Paraepimastopora and Sparaphralysia). Some of the algal taxa can be considered as potential regional markers for the Serpukhovian, such as Archaeolithophyllum, cf. Clavaporella, Frustulata and Girvanella (?) sp. The algal assemblages found in the Guadiato Area show the greatest similarities with those in the Béchar‐Mézarif (Algeria), Pyrenees and Montagne Noire (southern France). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Analysis of Mississippian coral assemblages from the Khenifra region of Central Morocco together with data from foraminiferal/algal microfossils has established new age dating of 5 localities within the Azrou–Khenifra Basin: Souk El Had and Sidi Lamine, where corals occur mainly in biostromes protected by oolitic shoals, Tabainout, where corals have been recorded in different environments related to microbial mounds, Alhajra Almatkouba, where corals occur in biostromal reworked beds and Tiouinine, where corals occur in a well structured, fringing reef. This study demonstrates the presence of richer more diverse coral assemblages than previously recorded, in a variety of environmental settings. These coral assemblages strengthen correlations with the Adarouch area in the NE part of the Azrou–Khenifra Basin. It is emphasised that in the upper Viséan there are close similarities with rugose coral assemblages in other parts of the Western Palaeotethys including North Africa, SW Spain and NW Europe, and that all belong to the same biogeographic province.  相似文献   

18.
Micro- and macrofauna remains were studied from transitional deposits of Moscovian and Kasimovian Stages in the Donskaya Luka (Volgograd Region). The preliminary analysis of microfauna showed that “sub-Triticites Beds” of the Donskaya Luka contain fusulinid and conodont assemblages enabling correlation of the Middle and Upper Carboniferous deposits in the study region with the type sections of Moscow area and Donbass. Conodonts from the “sub-Triticites Beds” stratotype were studied for the first time. As is established, upper part of the Sukhov Fm. and the base of the Seleznev Fm. belong to the Protriticites pseudomontiparus-Obsoletes obsoletus Zone. Based on fusulinids, higher parts of the Seleznev Fm. belong to the Montiparus Zone of the Khamovnikian Substage, whereas conodonts suggest their correlation with lower part of the Khamovnikian Substage, i.e., with the Ratmirovo Fm. or a basal part of the Neverovo Fm. Middle part of the Seleznev Fm. is correlated to middle cycle of the Neverovo Fm. of the Khamovnikian Substage in Moscow area. The Middle-Upper Carboniferous boundary deposits of the Donskaya Luka are represented by deposits of extremely shallow-water settings and contain only sporadic microfauna. These sections cannot be considered as possible candidates for the GSSP of the Kasimovian Stage base.  相似文献   

19.
The upper Qigeblaq Formation (Fm) dolostones and the Yurtus Fm phosphatic cherts, black shales, limestones, and dolostones are widely distributed in the Precambrian/Cambrian transitional succession of the Aksu-Wushi area. Negative δ13C excursion above the Yurtus Fm/ Qigeblaq Fm boundary was determined in this study. The pronounced negative carbon isotope excursion occurs in the phosphatic chert layers at the bottom of the Cambrian Yurtus Fm, below which the first appearance of the Asteridium- Heh'osphaeridium-Comasphaeridium (AHC) acritarch assemblage zone. The δ13C curve of the lower part of the Yurtus Fm in the Aksu-Wushi area was found to be correlated with the early Cambrian δ13C curves of the Zhujiaqing Fm (Daibu Member), the lower part of the Yanjiahe Fm on the Yangtze Platform in China, the lower Tal Fm in India, the Sukharikha Fm in Siberia, and the upper part of the Tsagaan Oloom Fm in Mongolia through biostigraphy. The lower part of the Yurtus Fm in the Tarim Basin is at the Nemakit-Daldynian stage, and the Precambrian/Cambrian boundary of the Aksu-Wushi area may be located in the phosphatic chert unit which just below the first appearance AHC acritarch assemblage zone. The negative δ13C excursion (N1) across the Precambrian/Cambrian boundary in the studied section may have resulted from oceanic overturning and sea level rise.  相似文献   

20.
Revision of several important Carboniferous stratigraphic successions in basins in the Saharan Platform allows us to propose distinct biostratigraphical boundaries for the upper Viséan, lower and upper Serpukhovian and lower Bashkirian, with the latter boundary separating upper Mississippian from lower Pennsylvanian strata. The boundaries are not only defined primarily by foraminifers but also incorporate ammonoid and conodont data. This study shows that the positioning of some boundaries differs significantly from previous studies in the region.For the studied interval, it can be recognized that two well-defined tectonic events were widespread in the entire Sahara Platform: a mostly late Viséan event and a latest Serpukhovian–early Bashkirian event. Both tectonic events show a marked tendency to become younger eastward, and they are compared to the intra-Viséan phase of the Variscan Orogeny and the main phase of this orogeny, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号