首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several one and two dimensional mean field models are analyzed where the effects of current helicity fluxes and boundaries are included within the framework of the dynamical quenching model. In contrast to the case with periodic boundary conditions, the final saturation energy of the mean field decreases inversely proportional to the magnetic Reynolds number. If a nondimensional scaling factor in the current helicity flux exceeds a certain critical value, the dynamo can operate even without kinetic helicity, i.e. it is based only on shear and current helicity fluxes, as first suggested by Vishniac & Cho (2001, ApJ 550, 752). Only above this threshold is the current helicity flux also able to alleviate catastrophic quenching. The fact that certain turbulence simulations have now shown apparently non‐resistively limited mean field saturation amplitudes may be suggestive of the current helicity flux having exceeded this critical value. Even below this critical value the field still reaches appreciable strength at the end of the kinematic phase, which is in qualitative agreement with dynamos in periodic domains. However, for large magnetic Reynolds numbers the field undergoes subsequent variations on a resistive time scale when, for long periods, the field can be extremely weak. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries.  相似文献   

3.
Mechanisms of nonhelical large‐scale dynamos (shear‐current dynamo and effect of homogeneous kinetic helicity fluctuations with zero mean) in a homogeneous turbulence with large‐scale shear are discussed. We have found that the shearcurrent dynamo can act even in random flows with small Reynolds numbers. However, in this case mean‐field dynamo requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number, Pmcr = 0.24, is determined using second order correlation approximation (or first‐order smoothing approximation) for a background random flow with a scale‐dependent viscous correlation time τc = (νk 2)–1 (where ν is the kinematic viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear‐current dynamo occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating large‐scale magnetic fields in a broad class of astrophysical turbulent systems with large‐scale shear. On the other hand, mean‐field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that contains, e.g., low‐frequency oscillations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A new class of analytical solution of the coupled system of Da Rios-diffusion equation in magnetohydrodynamic (MHD) representing solitonic vortex filaments is obtained. One of the solutions is similar to the one found by Rogers and Schief describing a solitary wave propagating along a constant torsion vortex filament. Scalar magnetic diffusion equations are obtained by decomposing the magnetic filament along Frenet frame. The integral invariant of curvature is used to place limits on the diffused 100 eV plasma filament curvature. The resistivity of η=5×10?5 ohm?cm—close to the stainless steel limit is used to approximate the Frenet curvature. From the scalar diffusion equations the vortex filaments are constrained to move along torsionless (planar) trajectories. Da Rios equations are coupled to diffusion equation to obtain a solitonic vortex diffused filaments. Due to bounds in time and length L we show that the model discussed is particularly useful in solar physics.  相似文献   

5.
In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo’s mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the linear regime, the dynamo saturates at a level significantly higher than normal turbulent dynamos, namely at exact equipartition when the magnetic Prandtl number Prm∼ 1. Visualization of the magnetic and velocity fields at saturation will help us to understand some of the aspects of the non-linear dynamo problem.  相似文献   

6.
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.  相似文献   

7.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
B. C. Low 《Solar physics》1982,75(1-2):119-131
We present a simple magnetostatic theory of the thin vertical filaments that make up the quiescent prominence plasma as revealed by fine spatial resolution H photographs. A class of exact equilibrium solutions is obtained describing a horizontal row of long vertical filaments whose weights are supported by bowed magnetic field lines. A free function is available to generate different assortments of filament sizes and spacings, as well as different density and temperature variations. The classic Kippenhahn-Schlüter solution for a long sheet without filamentary structures is a particular member of this class of solutions. The role of the magnetic field in supporting and thermally shielding the filament plasma is illustrated. It is found that the filament can have a sharp transition perpendicular to the local field, whereas the transition in the direction of the local field is necessarily diffuse. A consequence of the filamentary structure is that its support by the Lorentz force requires the electric current to have a component along the magnetic field. This electric current flowing into the rarefied region around the prominence can contain substantial energy stored in the form of force-free magnetic fields. This novel feature has implications for the heating and the disruption of prominences.  相似文献   

9.
For a simple spherically symmetric mean‐field dynamo model we investigate the possibility of determining the radial dependence of the coefficient α. Growth rates for different magnetic field modes are assumed to be known by measurement. An evolutionary strategy (ES) is used for the solution of the inverse problem. Numerically, we find quite different α‐profiles giving nearly the same eigenvalues. The ES is also applied to find functions α(r) yielding zero growth rates for the lowest four magnetic field modes. Additionally, a slight modification of the ES is utilized for an “energetic” optimization of α2‐dynamos. The consequences of our findings for inverse dynamo theory and for the design of future dynamo experiments are discussed.  相似文献   

10.
The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super‐equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of α. For solar parameters, typical magnetic helicity fluxes lie around 1047 Mx2 per cycle.  相似文献   

11.
Solar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields&amp;#x2019; sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.  相似文献   

12.
For planets with strong intrinsic magnetic fields such as Earth and Jupiter, an external magnetic field is unlikely to affect the internal dynamo, but for bodies with weak intrinsic fields in appropriate environments, such as Mercury and Ganymede, the interaction with nearby field sources may determine the internal dynamics and overall behavior of their liquid iron cores. On the basis of simulations of such interactions using numerical models for fluid flow and dynamo generation, the parameter regimes for stable dipolar and multipolar reversing dynamo magnetic fields established for isolated systems can be substantially changed by the action of external sources. Relatively weak external background fields (as low as 2% of the averaged undisturbed field at the core-mantle boundary) may change the energy balance and alter the regime over which natural isolated dynamos operate.  相似文献   

13.
An Exploration of Non-kinematic Effects in Flux Transport Dynamos   总被引:1,自引:0,他引:1  
Recent global magnetohydrodynamical simulations of solar convection producing a large-scale magnetic field undergoing regular, solar-like polarity reversals also present related cyclic modulations of large-scale flows developing in the convecting layers. Examination of these simulations reveal that the meridional flow, a crucial element in flux transport dynamos, is driven at least in part by the Lorentz force associated with the cycling large-scale magnetic field. This suggests that the backreaction of the field onto the flow may have a pronounced influence on the long-term evolution of the dynamo. We explore some of the associated dynamics using a low-order dynamo model that includes this Lorentz force feedback. We identify several characteristic solutions which include single period cycles, period doubling and chaos. To emulate the role of turbulence in the backreaction process we subject the model to stochastic fluctuations in the parameter that controls the Lorentz force amplitude. We find that short term fluctuations produce long-term modulations of the solar cycle and, in some cases, grand minima episodes where the amplitude of the magnetic field decays to near zero. The chain of events that triggers these quiescent phases is identified. A subsequent analysis of the energy transfer between large-scale fields and flows in the global magnetohydrodynamical simulation of solar convection shows that the magnetic field extracts energy from the solar differential rotation and deposits part of that energy into the meridional flow. The potential consequences of this marked departure from the kinematic regime are discussed in the context of current solar cycle modeling efforts based on flux transport dynamos.  相似文献   

14.
We summarize the current state of the long term discussion about the saturation mechanisms associated with rapid growth of small‐scale magnetic field, that operate in large‐scale galactic dynamos, and related problems with magnetic helicity conservation. Our general conclusion is that, taking into account magnetic helicity fluxes, large‐scale magnetic field can be amplified up to about the equipartition level. In contrast, models without helicity fluxes give an initial temporal magnetic field growth, but then decay. In our opinion, it is more appropriate to refer to the situation as a “potentially catastrophic scenario” rather than as “catastrophic α‐quenching” (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Mackay  D.H.  Gaizauskas  V. 《Solar physics》2003,216(1-2):121-142
In this paper we seek the origin of the axial component of the magnetic field in filaments by adapting theory to observations. A previous paper (Mackay, Gaizauskas, and van Ballegooijen, 2000) showed that surface flows acting on potential magnetic fields for 27 days – the maximum time between the emergence of magnetic flux and the formation of large filaments between the resulting activity complexes – cannot explain the chirality or inverse polarity nature of the observed filaments. We show that the inclusion of initial helicity, for which there is observational evidence, in the flux transport model results in sufficiently strong dextral fields of inverse polarity to account for the existence and length of an observed filament within the allotted time. The simulations even produce a large length of dextral chirality when just small amounts of helicity are included in the initial configuration. The modeling suggests that the axial field component in filaments can result from a combination of surface (flux transport) and sub-surface (helicity) effects acting together. Here surface effects convert the large-scale helicity emerging in active regions into a smaller-scale magnetic-field component parallel to the polarity inversion line so as to form a magnetic configuration suitable for a filament.  相似文献   

16.
Starting from the present version of the Riga dynamo experiment with its rotating magnetic eigenfield dominated by a single frequency we ask for those modifications of this set‐up that would allow for a non‐trivial magnetic field behaviour in the saturation regime. Assuming an increased ratio of azimuthal to axial flow velocity, we obtain energy oscillations with a frequency below the eigenfrequency of the magnetic field. These new oscillations are identified as magneto‐inertial waves that result from a slight imbalance of Lorentz and inertial forces. Increasing the azimuthal velocity further, or increasing the total magnetic Reynolds number, we find transitions to a chaotic behaviour of the dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos with α linearly depending on position, which makes this dynamo oscillatory, too. In both cases, the critical values of the dynamo number is lowered due to spatio‐temporal nonlocality.When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos  相似文献   

18.
The role of shear in alleviating catastrophic quenching by shedding small‐scale magnetic helicity through fluxes along contours of constant shear is discussed. The level of quenching of the dynamo effect depends on the quenched value of the turbulent magnetic diffusivity. Earlier estimates that might have suffered from the force‐free degeneracy of Beltrami fields are now confirmed for shear flows where this degeneracy is lifted. For a dynamo that is saturated near equipartition field strength those estimates result in a 5‐fold decrease of the magnetic diffusivity as the magnetic Reynolds number based on the wavenumber of the energy‐carrying eddies is increased from 2 to 600. Finally, the role of shear in driving turbulence and large‐scale fields by the magneto‐rotational instability is emphasized. New simulations are presented and the 3π /4 phase shift between poloidal and toroidal fields is confirmed. It is suggested that this phase shift might be a useful diagnostic tool in identifying mean‐field dynamo action in simulations and to distinguish this from other scenarios invoking magnetic buoyancy as a means to explain migration away from the midplane. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In mean‐field magnetohydrodynamics the mean electromotive force due to velocity and magnetic‐field fluctuations plays a crucial role. In general it consists of two parts, one independent of and another one proportional to the mean magnetic field. The first part may be nonzero only in the presence of mhd turbulence, maintained, e.g., by small‐scale dynamo action. It corresponds to a battery, which lets a mean magnetic field grow from zero to a finite value. The second part, which covers, e.g., the α effect, is important for large‐scale dynamos. Only a few examples of the aforementioned first part of the mean electromotive force have been discussed so far. It is shown that a mean electromotive force proportional to the mean fluid velocity, but independent of the mean magnetic field, may occur in an originally homogeneous isotropic mhd turbulence if there are nonzero correlations of velocity and electric current fluctuations or, what is equivalent, of vorticity and magnetic field fluctuations. This goes beyond the Yoshizawa effect, which consists in the occurrence of mean electromotive forces proportional to the mean vorticity or to the angular velocity defining the Coriolis force in a rotating frame and depends on the cross‐helicity defined by the velocity and magnetic field fluctuations. Contributions to the mean electromotive force due to inhomogeneity of the turbulence are also considered. Possible consequences of the above findings for the generation of magnetic fields in cosmic bodies are discussed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
David Stevenson 《Icarus》1974,22(4):403-415
The origin and maintenance of planetary magnetic fields are discussed. The discussion is not limited to dynamo theories although these are almost universally favored. Thermoelectric currents are found to be a possible alternative for Jupiter. Two energy sources for dynamos are considered: convection and precessionally induced fluid flow. The earth is the most favorabl planet for a precessionally driven dynamo, although Neptune is a possibility. Jupiter is likely to have a convectionally driven dynamo, as may Saturn, but the relevant properties of Saturn are not yet well known. Conclusions for each planet are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号