首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The orbital elements of HD 54901, HD 120544 and HD 123280, three nearby F‐type spectroscopic binaries, are presented. They are based on observations made between 1982 and 2004 with the CORAVEL instrument of Observatoire de Haute‐Provence. Physical parameters are derived for the two components of HD 54901 (SB2) and for the primaries of HD 120544 and HD 123280. The rotation‐revolution synchronism of the detected components is investigated. Pseudosynchronism is very likely achieved by the F7 V secondary component of HD 54901, whereas the F2/3 IV primary has not yet reached this stage. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The orbital elements of three red‐giant single‐lined spectroscopic binaries, HR 1304, HR 1908 and HD 126947, are presented. They are obtained from observations made with two photoelectric spectrometers of CORAVEL type, the first located at the Observatoire de Haute‐Provence and the second at the Cambridge Observatories. HR 1304 and HR 1908 are known to be chromospherically active stars and to have high spatial velocities; HD 126947 is an intrinsic variable newly detected by Hipparcos. The three systems have long orbital periods: 1.9, 3.2 and 7.7 yr for HR 1304, HR 1908 and HD 126947, respectively. From the orbital elements that we determined and other data available in the literature, we deduce some information about the unseen companions and their separations with respect to the primaries. Finally we discuss the rotation–revolution synchronism and conclude that one star, HR 1908, may have reached the state of pseudo‐synchronism, despite of its long orbital period. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We use an Artificial Neural Network (ANN) to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of four double‐lined spectroscopic binary systems HD 152218, HD 143511, HD 27149, and ER Vul, we find corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by others using more traditional methods (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present the results of a radial‐velocity study of eight southern SB1 spectroscopic binaries with composite spectra: HD 34318‐9, HD 47579‐80, HD 70442‐3, HD 74946‐7, HD 102171‐2, HD 120901‐2, HD 168701‐2, and HD 174191‐2. The observations were made at Haute‐Provence observatory with the CORAVEL instrument between 1982 and 2006. From the radial‐velocity measurements of the cool components, we derive the orbital elements of those spectroscopic binaries. Using all the available data, we obtain an estimation of the orbital inclination and the angular separation of the two components. Finally we discuss the rotation‐revolution synchronism of the cool components. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present the results of a radial-velocity study of seven Am stars (HD 3970, 35035, 93946, 151746, 153286, 204751 and 224002) observed at the Observatoire de Haute-Provence (OHP) and the Cambridge Observatories with CORAVEL instruments. We find that these systems are single-lined spectroscopic binaries whose orbital elements are determined for the first time. Among this sample, HD 35035 and 153286 have long periods, with   P = 2.8  and 9.5 yr, respectively, which is rather unusual for Am stars. Four systems have orbits with large eccentricities (with   e ≥ 0.4  ). Physical parameters are inferred from this study for the primaries of those systems.
We then investigate the influence of tidal interaction, which has already led to the synchronism of the primaries and/or to the circularization of the orbits of some systems belonging to this sample. We extend this study to the list of 33 objects studied in this series of papers and derive values of the critical fractional radii   r = R / a   for circularization and synchronization of Am-type binaries. We find that the stars with   r ≳ 0.15  are orbiting on circular orbits and that synchronism is likely for all components with   r ≳ 0.20  .  相似文献   

6.
We present the results of a radial‐velocity study of nine new faint SB1 spectroscopic binaries with composite spectra: HD 137975‐6, 177984, HDE 226489, 231613‐4, 255387‐8, 256138‐9, 264997‐8, 276787 and 293041‐2. The observations were made at Haute‐Provence and Cambridge observatories with CORAVEL instruments between 1982 and 2006. From the radial‐velocity measurements of the cool components, we derive the orbital elements of those spectroscopic binaries for the first time. Using all the available data, we propose a model for each system that describes the nature of the individual components, with an estimation of the angular separation and orbital inclination. Finally we discuss the rotation–revolution synchronism of the cool components. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We use an Artificial Neural Network (ANN) to derive the orbital parameters ofspectroscopic binary stars. Using measured radial velocity data of six double‐lined spectroscopic binary systems RZ Cas, CC Cas, HS Her, HD 93917, V921 Her and Y Cygni, we find corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by others using more traditional methods (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present the results of a radial-velocity study of eight Am stars (HD 341, 55822, 61250, 67317, 93991, 162950, 224890 and 225137) observed at Observatoire de Haute-Provence with the CORAVEL instrument. We find that these systems are single-line spectroscopic binaries whose orbital elements are determined for the first time.  相似文献   

9.
We present preliminary results from the first part of the LuckyCam late M‐dwarf binarity survey. We survey a sample of 48 nearby (< 40 pc) and red (M5–M9) stars with the novel high angular resolution visible light imaging technique Lucky Imaging, in only 8 hours of 2.5m telescope time. We discover 10 new binaries; although the survey is sensitive to brown dwarf companions none are detected. The orbital radius distribution of the newly discovered binaries broadly matches that of previous detections by other groups, although we do discover one wide binary at ∼40 AU. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have obtained complete phase coverage of the WC7+O binaries WR 42 = HD 97152 and WR 79 = HD 152270 with high signal-to-noise ratio (S/N), moderate-resolution spectra. Remarkable orbital phase-locked profile variations of the C  iii λ 5696 line are observed and interpreted as arising from colliding wind effects. Within this scenario, we have modelled the spectra using a purely geometrical model that assumes a cone-shaped wind–wind interaction region which partially wraps around the O star. Such modelling holds the exciting promise of revealing a number of interesting parameters for WR+O binaries, such as the orbital inclination, the streaming velocity of material in the interaction region and the ratio of wind momentum flux. Knowledge of these parameters in turn leads to the possibility of a better understanding of WR star masses, mass-loss rates and wind region characteristics.  相似文献   

11.
12.
Sixteen new eclipsing binaries have been discovered by the MOST satellite among guide stars used to point its telescope in various fields. Several previously known eclipsing binaries were also observed by MOST with unprecedented quality. Among the objects we discuss in more detail are short‐period eclipsing binaries with eccentric orbits in young open clusters: V578 Mon in NGC 2244 and HD 47934 in NGC 2264. Long nearly‐continuous photometric runs made it possible to discover three long‐period eclipsing binaries with orbits seen almost edge‐on: HD 45972 with P = 28.1 days and two systems (GSC 154 1247 and GSC 2141 526) with P > 25 days. The high precision of the satellite data led to discoveries of binaries with very shallow eclipses (e.g., HD 46180 with A = 0.016 mag, and HD 47934 with A = 0.025 mag). Ground‐based spectroscopy to support the space‐based photometry was used to refine the models of several of the systems (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper new orbital elements are given for eleven binaries. For eight of them, WDS 00003–4417 = I 1477, WDS 00106–7313 = I 43 AB, WDS 00366+5609 = A 914, WDS 00519–4343 = I 47, WDS 01315+1521 = BU 506, WDS 01577+4434 = A 1526, WDS 08144–4550 = FIN 113 AB and WDS 08291–4756 = FIN 315 Aa‐Ab, the orbital elements are calculated for the first time. For three of them, WDS 04422+2257 = MCA 16 Aa‐Ab, WDS 08275–5501 = FIN 116 and WDS 14567–6247 = FIN 372, the orbital elements are recalculated. One of the eleven binaries, MCA 16 Aa‐Ab, was discovered by McAlister in 1980 by speckle interferometry and four pairs were discovered by Finsen between 1929 and 1960. For these five pairs, all measured separations are less than 0″.4 and most of the observations were done by using the interferometric techniques. The orbital periods calculated here are between 39 and 270 years. The remaining six pairs were discovered between 1878 and 1926 and most of the observations are visual. They have longer orbital periods, between 384 and 1637 years. In addition to the orbital elements the masses, dynamical parallaxes, absolute magnitudes and ephemerides for the next five years are also given in this paper (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We report on our follow‐up spectroscopy of HD 1071478 B, a recently detected faint co‐moving companion of the exoplanet host star HD 107148 A. The companion is separated from its primary star by about 35″ (or 1790 AU of projected separation) and its optical and near infrared photometry is consistent with a white dwarf, located at the distance of HD 107148 A. In order to confirm the white dwarf nature of the co‐moving companion, we obtained follow‐up spectroscopic observations of HD 107148 B with CAFOS at the CAHA 2.2 m telescope. According to our CAFOS spectroscopy HD 107148 B is a DA white dwarf with an effective temperature in the range between 5900 and 6400K. The properties of HD 107148 B can further be constrained with the derived effective temperature and the known visual and infrared photometry of the companion, using evolutionary models of DA white dwarfs. We obtain for HD 107148 B a mass of 0.56 ± 0.05 M, a luminosity of (2.0 ± 0.2) × 10–4 L, log g [cm s–2]) = 7.95 ± 0.09, and a cooling age of 2100 ± 270 Myr. With its white dwarf companion the exoplanet host star HD 107148 A forms an evolved stellar system, which hosts at least one exoplanet. So far, only few of these evolved systems are known, which represent only about 5 % of all known exoplanet host multiple stellar systems. HD 107148 B is the second confirmed white dwarf companion of an exoplanet host star with a projected separation to its primary star of more than 1000 AU. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The triple-lined spectroscopic triple system HD 109648 has one of the shortest periods known for the outer orbit in a late-type triple, 120.5 d, and the ratio between the periods of the outer and the inner orbits is small, 22:1. With such extreme values, this system should show orbital element variations over a time-scale of about a decade. We have monitored the radial velocities of HD 109648 with the CfA Digital Speedometers for 8 yr, and have found evidence for modulation of some orbital elements. While we see no definite evidence for modulation of the inner binary eccentricity, we clearly observe variations in the inner and the outer longitudes of periastron, and in the radial velocity amplitudes of the three components. The observational results, combined with numerical simulations, allow us to put constraints on the orientation of the orbits.  相似文献   

16.
We present relative astrometric measurements of visual binaries made during the second semester of 2005, with the speckle camera PISCO at the 102 cm Zeiss telescope of Brera Astronomical Observatory, in Merate. Our sample contains orbital couples as well as binaries whose motion is still uncertain. The purpose of this long term program is to improve the accuracy of the orbits and determine the masses of the components. We performed 130 new observations of 120 objects, with most of the angular separations in the range 0″.1–4″, and with an average accuracy of 0″.01. Most of the position angles could be determined without the usual 180. ambiguity with the application of triple‐correlation techniques, and their mean error is 0°8. We have found a possible new triple system: ADS 11077. The measurements of the closest binaries were made with a new data reduction procedure, based on model fitting of the background of the auto‐correlations. As this procedure proved to be very efficient, we have re‐processed the old observations of close binaries made with PISCO in Merate since 2004. We thus improved 20 measurements already published and obtained 7 new measurements for observations that were previously reported as “unresolved”. We finally present revised orbits for ADS 684, MCA 55Aac (in the Beta 1 Cyg–Albireo multiple system) and ADS 14783 for which the previously published orbits led to large residuals with our measurements and for which the new observations made since their computation allowed a significant improvement of those old orbits. The sum of the masses that we derived for those systems are consistent with the spectral type of the stars and the dynamic parallaxes are in good agreement with the parallaxes measured by Hipparcos. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The paper presents new photoelectric observations of the eclipsing binary systems DU Boo and AG Vir. The systems are somewhat similar – both are A‐type contact binaries with the maximum following the primary minimum being the brighter one. This light curve asymmetry is extremely temporally stable. The phase dependence of the color indices is unexpectedly small for the observed amplitude of the O'Connell effect, amounting to about 0.1 mag in the optical wavelength range which indicates a very large heated area with a temperature contrast of ΔT ≈ 1000–1500 K. The broadening functions (BFs) of the systems do not show any dark solar‐type photospheric spots. On the other hand, there are significant differences of BFs between the quadratures (surprisingly similar in both systems) indicative of stream of matter or bright region causing additional emission seen between the components around the phase 0.25. Absolute parameters of the components slightly depend on the adopted model. Long orbital period of both contact binaries combined with late spectral type indicate that the primary components of either of the systems (but particularly in case of DU Boo) already evolved off the main sequence (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present relative astrometric measurements of visual binaries, made in 2009 with the speckle camera PISCO at the 102 cm Zeiss telescope of Brera Astronomical Observatory, in Merate. Our observing list contains orbital couples as well as binaries whose motion is still uncertain. We obtained 345 new measurements of 259 objects, with angular separations in the range 0.″18–4.″6, and an average accuracy of 0.″011. The mean error on the position angles is 0.°6. Most of the position angles were determined without the usual 180° ambiguity with the application of triple‐correlation techniques and/or by inspection of the long integration files. We have found a possible new close component for ADS 2377, which would be a new quadruple star system. We also present new revised orbits for ADS 8035, 9982, 11484, and MLR 198, partly derived from those observations, and infer estimated values for the masses of those systems that are compatible with the spectral types (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present relative astrometric measurements of visual binaries made during the second semester of 2007, with the speckle camera PISCO at the 102 cm Zeiss telescope of Brera Astronomical Observatory, in Merate. Our sample contains orbital couples as well as binaries whose motion is still uncertain. We obtained 283 new measurements of 279 objects, with angular separations in the range 0″.17–4″.4, and an average accuracy of 0″.014. The mean error on the position angles is 0°.6. Most of the position angles were determined without the usual 180° ambiguity with the application of triple‐correlation techniques and/or by inspection of the long integration files. We also present the new orbit we have computed for Zeta Aqr AB (ADS 15971), for which our measurements lead to large residuals with the previously computed orbit. We were also able to compute the elements of the perturbation orbit Bb‐P caused by an invisible companion, whose mass is estimated at 0.7 M (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Low frequency oscillation, typical for γ Doradus g‐mode type stellar core sensitive pulsation, as well as higher frequency δ Scuti type pulsation typical for p ‐modes, sensitive to the envelope, make HD 8801 a remarkable hybrid pulsator with the potential to probe a stellar structure over a wide range of radius. In addition HD 8801 is a rare pulsating metallic line (Am) star. We determined the astro‐physical fundamental parameters to locate HD 8801 in the H‐R diagram. We analyzed the element abundances, paying close attention to the errors involved, and confirm the nature of HD 8801 as a metallic line (Am) star. We also determined an upper limit on the magnetic field strength. Our abundance analysis is based on classical techniques, but uses for the final step a model atmosphere calculated with the abundances determined by us. We also discuss spectropolarimetric observations obtained for HD 8801. This object is remarkable in several respects. It is a nonmagnetic metallic line (Am) star, pulsating simultaneously in p‐ and g‐modes, but also shows oscillations with periods in between these two domains, whose excitation requires explanation. Overall, the pulsational incidence in unevolved classical Am stars is believed to be quite low; HD 8801 does not conform to this picture. Finally, about 75 % of Am stars are located in short‐period binaries, but there is no evidence that HD 8801 has a companion. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号