首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accreting black holes often show iron line emission in their X‐ray spectra. When this line emission is very broad or variable then it is likely to originate from close to the black hole. The theory and observations of such broad and variable iron lines are briefly reviewed here. In order for a clear broad line to be found, one or more of the following have to occur: high iron abundance, dense disk surface and minimal complex absorption. Several excellent examples are found from observations of Seyfert galaxies and Galactic Black Holes. In several cases there is strong evidence that the black hole is rapidly spinning. Further examples are expected as more long observations are made with XMM‐Newton, Chandra and Suzaku. Intriguing instances of rapid variability of some narrow iron lines, both emission and absorption, have been reported. These may reflect variations in the irradiation or motion of physical structures on the accretion disk. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The X‐ray spectra of Active Galactic Nuclei (AGN) are complex and vary rapidly in time as seen in recent observations. Magnetic flares above the accretion disk can account for the extreme variability of AGN. They also explain the observed iron Kα fluorescence lines. We present radiative transfer modeling of the X‐ray reflection due to emission from magnetic flares close to the marginally stable orbit. The hard X‐ray primary radiation coming from the flare source illuminates the accretion disk. A Compton reflection/reprocessed component coming from the disk surface is computed for different emission directions. We assume that the density structure remains adjusted to the hydrostatic equilibrium without external illumination because the flare duration is only a quarter‐orbit. The model takes into account the variations of the incident radiation across the hot spot underneath the flare source. The integrated spectrum seen by a distant observer is computed for flares at different orbital phases close to the marginally stable orbit of a Schwarzschild black hole and of a maximally rotating Kerr black hole. The calculations include relativistic and Doppler corrections of the spectra using a ray tracing technique. We explore the practical possibilities to map out the azimuthal irradiation pattern of the inner accretion disks and conclude that the next generation of X‐ray satellites should reveal this structure from iron Kα line profiles and X‐ray lightcurves. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We report on the iron Kα line properties of a sample of Seyfert galaxies observed with the XMM‐Newton EPIC pn instrument. Using a systematic and uniform analysis, we find that complexity at iron‐K is extremely common in the XMM‐Newton spectra. Once appropriate soft X‐ray absorption, narrow 6.4 keV emission and associated Compton reflection are accounted for, ∼75% of the sample show an improvement when a further component is introduced. The typical properties of the broad emission are both qualitatively and quantitatively consistent with previous results from ASCA. The complexity is in general very well described by relativistic accretion disk models. In most cases the characteristic emission radius is constrained to be within ∼50R g, where strong gravitational effects become important. We find in about 1/3 of the sample the accretion disk interpretation is strongly favoured over competing models. In a few objects no broad line is apparent. We find evidence for emission within 6R g in only two cases, both of which exhibit highly complex absorption. Evidence for black hole spin based on the X‐ray spectra therefore remains tentative. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.  相似文献   

5.
We present the analysis of optical and X‐ray XMM‐Newton data of the source 4U 1344‐60. On the basis of the optical data we propose to classify 4U 1344‐60 as a Seyfert 1.5 galaxy and we measured a redshift value z = 0.012 ± 0.001. The observed X‐ray spectrum is complex. The continuum emission can be described as a power law obscured by two neutral absorption components. 4U 1344‐60 exhibits a broad and skewed iron line at 6.4 keV most likely originated in a few gravitational radius of an accretion disc. The analysis also reveals the presence of two narrow emission line‐like features at ∼4.9 keV and ∼5.3 keV. Assuming that hot spots on the surface of the accretion disc, orbiting very close to the black hole is responsible of these emission lines, the accretion disc would present an inclination of 20° and the active regions would be located in the 6–10 R g radius range. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Initial results on the iron K‐shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed Time program are reviewed. This paper discusses a small sample of Compton‐thin Seyferts observed to date with Suzaku; namely MCG‐5‐23‐16, MCG‐6‐30‐15, NGC4051, NGC3516, NGC2110, 3C 120 and NGC2992. The broad iron Kα emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG‐6‐30‐15 shows the most extreme relativistic blurring of all the objects, the red‐wing of the line requires the inner accretion disk to extend inwards to within 2.2R g of the black hole, in agreement with the XMM‐Newton observations. Strong excess emission in the Hard X‐ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton‐thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG‐6‐30‐15, MCG‐5‐23‐16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power‐law, while the iron line and reflection component remain relatively constant. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Current, accumulating evidence for (mildly) relativistic blue‐ and red‐shifted absorption lines in AGNs is reviewed. XMM‐Newton and Chandra sensitive X‐ray observations are starting to probe not only the kinematics (velocity) but also the dynamics (accelerations) of highly ionized gas flowing in‐and‐out from, likely, a few gravitational radii from the black hole. It is thus emphasized that X‐ray absorption‐line spectroscopy provides new potential to map the accretion flows near black holes, to probe the launching regions of relativistic jets/outflows, and to quantify the cosmological feedback of AGNs. Prospects to tackle these issues with future high energy missions are briefly addressed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr space–time. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish between different models of the central source.  相似文献   

9.
A brief overview of the ESAC/XMM‐Newton Science Operations Centre Workshop on “Variable and Broad Iron Lines around Black Holes” is presented. Following the relativistic disk‐line theory of accreting black holes, ASCA discovered such broad iron lines from several AGN. XMM‐Newton and Chandra confirmed the ASCA results, but also found more complexities. It was pointed out that poor modelling of the continuum may mimic broad iron line, if ionized absorbers are present. This degeneracy between the broad line and the continuum shape was shown to be resolved by separately determining the continuum and the reflection component with use of an accurate hard X‐ray spectrum obtained with Suzaku. As a result, the relativistic broad iron lines are now robust. Time variations of the primary continuum and the reflection component are often decoupled, the latter varying little. This is explained by the light bending model that applies in the region near to an extreme Kerr hole. The red‐ and/or blueshifted transient iron line features were found with XMM‐Newton, some of which revealed a possible quasi‐periodicity. Such transient features are important dynamical probes of the black hole vicinity. The remaining issues are briefly mentioned. Finally, there is no doubt that the broad line physics continues to be extremely important. Prospects for the future development are discussed, which justify large next‐generation missions. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present a study of the spectral variability of the Seyfert I galaxy MCG–6-30-15 based on the two long XMM–Newton observations from 2000 and 2001. The X–ray spectrum and variability properties of the 2001 data have previously been well described with a two-component model consisting of a variable power-law and a much less variable reflection component, containing a broad relativistic iron line from the accretion disc around a rapidly rotating Kerr black hole. The lack of variability of the reflection component has been interpreted as an effect of strong gravitational light bending very close to the central black hole. Using an improved reflection model, we fit the two-component model to time-resolved spectra of both observations. Assuming that the photon index of the power law is constant, we reconfirm the old result and show that this does not depend on the time-scale of the analysis.  相似文献   

11.
The inner parts of black‐hole accretion discs shine in X‐rays which can be monitored and the observed spectra can be used to trace strong gravitational fields in the place of emission and along paths of light rays. This paper summarizes several aspects of how the spectral features are influenced by relativistic effects. We focus our attention onto variable and broad emission lines, origin of which can be attributed to the presence of orbiting patterns – spots and spiral waves in the disc. We point out that the observed spectrum can determine parameters of the central black hole provided the intrinsic local emissivity is constrained by theoretical models. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present the results of the simultaneous XMM‐Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG–5‐23‐16, which is one of the best known examples of a relativistically broadened iron Kα line. We find that: a) the soft X‐ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ∼44000 km/s. This latter component has an EW ∼50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ∼40°. We found evidence of a possible sporadic absorption line at ∼7.7 keV which, if associated with Fe XXVI Kα resonance absorption, is indicative of a possible high velocity (v ∼ 0.1c) outflow. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The broad X-ray iron line observed in many active galactic nuclei spectra is thought to originate from the accretion disc surrounding the putative supermassive black hole. We show here how to perform the analytical integration of the geodesic equations that describe the photon trajectories in the general case of a rotating black hole (Kerr metric), in order to write a fast and efficient numerical code for modelling emission line profiles from accretion discs.  相似文献   

14.
用径移主导吸积流模型(ADAF)不仅可以成功解释很多低吸积率天体的连续谱辐射,也可以说明X射线波段的谱线发射,而后者目前尚少有讨论.以黑洞X射线双星GX339-4处在低吸积率的宁静态情况为例,计算了它的铁线发射,表明在ADAF情况下的确可以产生足够强的可以在观测上检测的类氢和类氦铁Kα线.  相似文献   

15.
We study and quantify gravitational redshift by means of relativistic ray tracing simulations of emission lines. The emitter model is based on thin, Keplerian rotating rings in the equatorial plane of a rotating black hole. Emission lines are characterised by a generalized fully relativistic Doppler factor or redshift associated with the line core. Two modes of gravitational redshift, shift and distortion, become stronger with the emitting region closer to the Kerr black hole. Shifts of the line cores reveal an effect at levels of 0.0015 to 60% at gravitational radii ranging from 105 to 2. The corresponding Doppler factors range from 0.999985 to 0.4048. Line shape distortion by strong gravity, i.e. very skewed and asymmetric lines occur at radii smaller than roughly ten gravitational radii. Gravitational redshift decreases with distance to the black hole but remains finite due to the asymptotical flatness of black hole space–time. The onset of gravitational redshift can be tested observationally with sufficient spectral resolution. Assuming a resolving power of ∼100000, yielding a resolution of ≈0.1 Å for optical and near‐infrared broad emission lines, the gravitational redshift can be probed out to approximately 75000 gravitational radii. In general, gravitational redshift is an indicator of black hole mass and spin as well as for the inclination angle of the emitter, e.g. an accretion disk. We suggest to do multi‐wavelength observations because all redshifted features should point towards the same central mass. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The X-ray spectra of accreting stellar-mass black hole systems exhibit spectral features due to reflection, especially broad iron Kα emission lines. We investigate the reflection by the accretion disc that can be expected in the high/soft state of such a system. First, we perform a self-consistent calculation of the reflection that results from illumination of a hot, inner portion of the disc with its atmosphere in hydrostatic equilibrium. Then, we present reflection spectra for a range of illumination strengths and disc temperatures under the assumption of a constant-density atmosphere. Reflection by a hot accretion disc differs in important ways from that of a much cooler disc, such as that expected in an active galactic nucleus.  相似文献   

17.
We present results from a recent broad‐band monitoring in optics of the Seyfert 1 type galaxy Mrk 279. We build and analyse the BV RI light curve covering a period of seven years (1995–2002). We also show some evidence for the existence of two different states in brightness and suggest, based on a modelling of the optical continuum, that these states may result from transition between a thin disk and an ADAF accretion modes. We assume that the short‐term variability is due to a reprocessing of a variable X‐ray emission from an inner ADAF part of the flow, while the long‐term one may be a result from a change of the transition radius. Our tests show a good match with the observations for a reasonable set of accretion parameters, close to the expected ones for Mrk 279. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Over the last few years X-ray observations of broad-line radio galaxies (BLRGs) by ASCA , RXTE and BeppoSAX have shown that these objects seem to exhibit weaker X-ray reflection features (such as the iron K α line) than radio-quiet Seyferts. This has lead to speculation that the optically thick accretion disc in radio-loud active galactic nuclei (AGN) may be truncated to an optically thin flow in the inner regions of the source. Here, we propose that the weak reflection features are a result of reprocessing in an ionized accretion disc. This would alleviate the need for a change in accretion geometry in these sources. Calculations of reflection spectra from an ionized disc for situations expected in radio-loud AGN (high accretion rate, moderate-to-high black hole mass) predict weak reprocessing features. This idea was tested by fitting the ASCA spectrum of the bright BLRG 3C 120 with the constant density ionized disc models of Ross & Fabian. A good fit was found with an ionization parameter of   ξ ∼4000 erg cm s-1  and the reflection fraction fixed at unity. If observations of BLRGs by XMM-Newton show evidence for ionized reflection then this would support the idea that a high accretion rate is likely required to launch powerful radio jets.  相似文献   

19.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

20.
Recent X-ray observations have shown evidence for exceptionally broad and skewed iron Kα emission lines from several accreting black hole systems. The lines are assumed to be due to fluorescence of the accretion disc illuminated by a surrounding corona and require a steep emissivity profile increasing into the innermost radius. This appears to question both standard accretion disc theory and the zero-torque assumption for the inner boundary condition, both of which predict a much less extreme profile. Instead it argues that a torque may be present due to magnetic coupling with matter in the plunging region or even to the spinning black hole itself. Discussion so far has centred on the torque acting on the disc. However, the crucial determinant of the iron line profile is the radial variation of the power radiated in the corona. Here we study the effects of different inner boundary conditions on the coronal emissivity and on the profiles of the observable Fe Kα lines. We argue that in the extreme case where a prominent highly redshifted component of the iron line is detected, requiring a steep emissivity profile in the innermost part and a flatter one outside, energy from the gas plunging into the black hole is being fed directly to the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号