首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着找矿、勘探与开发生产实践的不断深入,表露矿与浅部矿渐趋减少,找矿难度逐渐增大,找到一种简捷、迅速的勘查、探矿方式,迫在眉睫.根据实践证明,甚低频电磁法是较为理想的选择.在运用甚低频电磁法时,通过对所测数据进行Fraser滤波等技术处理,并且结合矿区地质研究控矿规律及矿体赋存规律,从而有效地圈定掩盖区异常地质体及其产状和展布方向,预测矿体空间赋存部位,为深部找矿提供依据.  相似文献   

2.
Very low frequency electromagnetic (EM) methods using VLF transmitters have found many applications in subsurface geophysical investigations. Surface measurements involving both the vertical component of the magnetic field (VLF-EM or VLF-Z) and of the apparent resistivity (VLF-R) are increasingly common. Although extensive VLF data sets have been successfully used for mapping purposes, modelling and interpretation techniques which asess the third (i.e. depth) dimension appear limited.Given a profile of VLF-R measurements the main purpose of the present study is to demonstrate an automatic method for the construction of a resistivity cross-section. The technique used is one of a new generation of regularised inversion methods. These techniques attempt to overcome the problem of equivalence/non-uniqueness in EM sounding data by constructing the resistivity distribution with the minimum amount of structure that fits the data.VLF data represent a special case of plane-wave EM sounding in that they conform, in practice, to a single-frequency technique. This fact imposes a limitation in the amount of vertical resolution that we can expect using such data. In the case of two-dimensional modelling and inversion, resolution through the cross-section is a resultant attribute from both vertical and lateral resistivity gradients within the subsurface. In order to provide insight into the practical application of regularised inversion techniques to VLF data, both synthetic and field examples are considered. Both sets of examples are primarily concerned with VLF data applied to near-surface fault mapping where the main aim is to assess the location, dip and depth extent of conductive subsurface features.  相似文献   

3.
Electromagnetic (EM) techniques are extremely important as a direct detection geophysical tool utilized in the base metal industry. They were developed in countries such as Canada, whose thin conductive weathering overburden did not hamper the penetration of EM signals and enabled exploration to depths on the order of 300 m. As a result, EM techniques were used widely in North America and Scandinavia for many years before they became common in countries with a thick conductive overburden, such as Australia. The 1980s and 1990s have seen the use of EM methods move from anomaly finding to mapping, as well as the development of better, faster and more accurate computer modelling algorithms. A review of EM papers, for the years 1998 to 2002, showed that most dealt with EM techniques as mapping tools. Airborne, ground and marine EM techniques are still being developed, as are data processing and interpretation software. The advent of robust 2-D and 3-D computer modelling and inversion algorithms has led to the acceptance of EM methods as a mapping tool for many environmental and petroleum industry applications, a trend which is expected to increase.  相似文献   

4.
The Peinan archaeological site is the most intact Neolithic village with slate coffin burial complexes in Taiwan. However, the area that potentially contains significant ancient remains is covered by dense vegetation. No reliable data show the distribution of the ancient village, and no geophysical investigation has been performed at this site. To evaluate various geophysical methods under the geological setting and surface condition of the site, the physical properties of the remains were measured and four geophysical methods involving magnetic, electromagnetic (EM), electrical resistivity tomography (ERT), and ground-penetrating radar (GPR) were tested along three parallel profiles. The results imply that the EM and magnetic methods are much cost-effective and suitable for investigating the entire area. GPR and ERT methods can provide high resolution subsurface image, which are much suitable for subsequently detail investigation.The EM and magnetic surveys were thus conducted over the entire Peinan Cultural Park to understand the distribution of the ancient building remains at the Peinan site. The results of this study were verified by subsequent excavations, which indicate that the EM survey was successful in delineating the majority of the ancient village because the basements of building are highly resistive in comparison to the background sediment. The results of this investigation suggest that the ancient village was broadly distributed over the eastern part of the Peinan Culture Park and extended to the southeast.  相似文献   

5.
The geographic association between earthflow occurrence, sensitivity of the sediment and salinity of the interstitial fluid has been examined in an area of exposed marine (Champlain Sea) deposits in the Lachute region northwest of Montreal, Quebec. Mapping of earth resistivity, as a means of calculating porefluid salinity, revealed that areas of large earthflows (>20 ha) coincided with sediment of very low porefluid salinity. Earthflow scars were absent from intervening areas of higher salinity (>5 gl?1). Mapping of the thickness of the clay deposit by seismic refraction showed, furthermore, that low porefluid salinity occurred only in areas of relatively thin (<25 m) deposits resting upon more permeable drift or rock. Finally, laboratory tests confirmed that high sensitivity was restricted to areas of low porefluid salinity. The study thus provides a geomorphological verification of the importance of ‘salt depletion’ as a prerequisite for earthflow occurrence, and, by implication, presents mapping of porefluid salinity as a method of delineating zones which should be safe from landslide retrogression in this type of sediment.  相似文献   

6.
Talc-rich rocks in Altermark occur as rims around magnetite bearing serpentinite lenses which are up to about 1 km wide. The content of magnetite in the serpentinite makes magnetic measurements possible as a method for talc-prospecting. In 1991 a helicopter-borne geophysical survey combined with geological and petrophysical mapping was carried out in the Altermark area. Several positive magnetic anomalies were detected. Positive magnetic anomalies with oval shapes, well defined boundaries and smooth anomaly curves were interpreted to be caused by serpentinite lenses. Laboratory measurements revealed susceptibilities for the serpentinites between 0.006−0.36 SI and a Q-value of approximately 0.3. Magnetic modelling of the Nakkan anomaly and subsequent drilling revealed that it was indeed a serpentinite body surrounded by talc rocks which was the cause of the anomaly. The shallowest part was located about 150 m below surface. The geophysical exploration led to the discovery of a talc-carbonate deposit with an anticipated in situ tonnage of more than 1 million tons. The present study consequently proved to be a classical case study where we were able to locate and establish the three-dimensional form of serpentinite bodies associated with talc deposits. We conclude that helicopter-borne geophysical surveying is an effective tool in the exploration of serpentinite cored talc bearing rocks in complex geological areas where exposures are poor or absent and accessibility difficult. The rough topography and dense vegetation in the Altermark area make this type of survey very cost effective.  相似文献   

7.
In August 2009, a marine geophysical survey was conducted in Lake Tequesquitengo (located in the state of Morelos, Mexico) to delineate the extent of the remains of a small town that has been submerged since the mid 19th century. The survey consists of the acquisition and mapping of magnetic, single beam bathymetric and side-scan sonar data. A dual receiver marine GPS navigation system was used to position the boat during the survey. Except for the larger structural remains that are visible on the side scan sonar images, the magnetic anomaly map proved to be most useful in delineating the extent of the town. These anomalies exhibit short wavelength components in the area surrounding a submerged church, with the shortest wavelength components being confined to the area immediately east of the church. These short wavelength components are only observed near the church; therefore, we propose that they delineate the buried remnants of the submerged town.  相似文献   

8.
微动勘查方法及其研究进展   总被引:7,自引:2,他引:5       下载免费PDF全文
本文简要回顾了微动的发展历史,并着重介绍了微动勘查方法的原理、方法及其最新进展,当今,城市物探中传统的地球物理勘探方法越来越受到限制,微动勘查方法以施工简单、成本低、费时短、对环境没有任何影响等优点,越发显现出其优势,由于横波速度对煤层陷落柱、采空区等速度异常区反映敏感,微动方法对探测陷落柱及解决村庄覆盖区的煤层构造问题,具有得天独厚的技术优势和应用前景.  相似文献   

9.
The relatively new subdiscipline of environmental geophysics has grown enormously in the last five years. The size and diversity of the field, and the associated literature, is such that it is extremely difficult to keep up with even a small portion of the field. Electrical and electromagnetic (E & EM) methods, including ground penetrating radar and time-domain reflectometry, play a central role in environmental geophysics. One reason for the utility of E & EM methods in groundwater studies is the similarity in the way that current flow and fluid flow depend on the connectivity and geometry of the pores in soils and rocks. Another reason is the influence of the pore water quality on the geophysical response. More than any other geophysical technique, E & EM methods are directly affected by the presence of conductive pore fluids in the subsurface, such as leachates from landfill sites and sea water invading a coastal groundwater supply that has been placed under stress because of population expansion. The chloride ion is one of the most electrically active of the naturally-occurring ions, and allows us to detect sea water incursion; leachates from landfill sites contain the by-products of organic decay, such as acetic acid, which are generally less conductive than chloride, but nonetheless enhance the pore water and formation electrical conductivities. Landfill leachate plumes are thus easily mapped. The shallow subsurface electrical and dielectric properties exhibit hysteresis due to seasonal changes in water content; the physical properties will be different for the same degree of saturation, depending on whether the water level is rising or falling. Topographic effects are also important; an empirical correction method works well to remove a background trend in the conductivity due to changes in elevation. Heterogeneity and anisotropy of the electric properties may be related to similar effects in the hydraulic properties. New technology and the adaptation of existing technology has lead to the development of fresh instruments, such as electrode arrays towed across the ground, resistivity logging while drilling, fast-rise time TEM, NMR combined with TEM, electric quadripole, et cetera. The applications of E & EM methods cover a wide range of geographic areas and groundwater problems, but have had particularly wide use for groundwater exploration in arid and semi-arid regions, for mapping and monitoring salt-water incursion in susceptible aquifers, and for mapping and monitoring contaminants.  相似文献   

10.
The paper gives a summary of geophysical aspects of man-made electromagnetic noise in the Earth as follows:
  • - EM distortion effects of man-made constructions below and over the Earth's surface defined as ‘passive-noise’,
  • - field observation of EM disturbances due to ‘active’ man-made sources,
  • - EM source mechanism of some important active sources from a geophysical point of view,
  • - efforts in order to improve the signal-to noise ratio by instrumental, methodological and dataprocessing ways,
  • - application of man-made EM noise for geophysical prospecting.
  • The paper is based on world-wide EM noise survey studies published mainly in geophysical journals.  相似文献   

    11.
    The very low frequency-electromagnetic (VLF-EM) technique was used to delineate two sub-parallel lava tubes, faults and dikes in Umm El-Quttein area, NE Jordan. The investigation of the lava tubes was conducted through 22 VLF-EM profiles across lava strike; the length of profiles ranged from 700 to 1700 m. The lava tubes outcrop at two sites: Azzam cave and Al-Howa tunnel, characterized by slightly weathered basalt, columnar joints and fissure zones; qualitative interpretation of Fraser and Karous-Hjelt maps differentiate those zones as linear, elongated and circular anomalous zones. The 2-D tipper inversion of VLF-EM data and resistivity imaging had the potential to screen out three anomalous zones of likely resistivity contrast: the lava tube body with resistivity over 2500 Θ·m, the fractured zones with resistivity less than 500 Θ·m, and the host vesicular basalt with resistivity of 1500 Θ·m. The strike of lava tubes varied from SW to NE direction with depth less than 20 m and width from 10 to 30 m.  相似文献   

    12.
    Electromagnetic geophysical methods, such as ground-penetrating radar (GPR), have proved to be optimal tools for detecting and mapping near-surface contaminants. GPR has the capability of mapping the location of hydrocarbon pools on the basis of contrasts in the effective permittivity and conductivity of the subsoil. At radar frequencies (50 MHz to 1 GHz), hydrocarbons have a relative permittivity ranging from 2 to 30, compared with a permittivity for water of 80. Moreover, their conductivity ranges from zero to 10 mS/m, against values of 200 mS/m and more for salt water. These differences indicate that water/hydrocarbon interfaces in a porous medium are electromagnetically 'visible'. In order to quantify the hydrocarbon saturation we developed a model for the electromagnetic properties of a subsoil composed of sand and clay/silt, and partially saturated with air, water and hydrocarbon. A self-similar theory is used for the sandy component and a transversely isotropic constitutive equation for the shaly component, which is assumed to possess a laminated structure. The model is first verified with experimental data and then used to obtain the properties of soils partially saturated with methanol and aviation gasoline. Finally, a GPR forward-modelling method computes the radargrams of a typical hydrocarbon spill, illustrating the sensitivity of the technique to the type of pore-fluid. The model and the simulation algorithm provide an interpretation methodology to distinguish different pore-fluids and to quantify their degree of saturation.  相似文献   

    13.
    Complementary geophysical surveys on large landslides help revealgeologic structures and processes, and thus can help devise mitigation strategies. The combined interpretation of these methods enhance the result of each data set interpretation and makes it possible to derive a geological model of the landslide.We chose a test site on the Boup landslide (Wallis, western SwissAlps) to test high-resolution seismic reflection surveyscombined with ground penetratingradar (GPR), electromagnetic (EM) and electrokinetic spontaneous potential (SP) measurements.The results of the high-resolution seismic surveys suggest thatthe sliding is within a gypsum layer at 50 m depth and not as previously believed along a deeper (70 m) gypsum-shale boundary, also mapped seismically. Inversion of electromagnetic profiles (EM-34) with constraints from seismic data provided a model cross-section of conductivity values of the landslide (20–25 mS/m) and of the surrounding stable ground (10–15 mS/m), and it helped outline their boundary at depth.The accurate surface location of the landslide limit could be detected withelectromagnetic measurements of shallower depths of investigation (EM-31). Positive PS anomalies revealed an upward flow of mineralised water interpreted to follow the lateral boundary of the Boup landslide on its east side. Limited success was obtained withGPR profiling. This method can be hampered by conductive shallow layers, and itssuccessful application on landslides is expected to be strongly site dependant.  相似文献   

    14.
    The Beldih open cast mine of the South Purulia Shear Zone in Eastern India is well known for apatite deposits associated with Nb–rare‐earth‐element–uranium mineralization within steeply dipping, altered ferruginous kaolinite and quartz–magnetite–apatite rocks with E–W strikes at the contact of altered mafic–ultramafic and granite/quartzite rocks. A detailed geophysical study using gravity, magnetic, and gradient resistivity profiling surveys has been carried out over ~1 km2 area surrounding the Beldih mine to investigate further the dip, depth, lateral extension, and associated geophysical signatures of the uranium mineralization in the environs of South Purulia Shear Zone. The high‐to‐low transition zone on the northern part and high‐to‐low anomaly patches on the southeastern and southwestern parts of the Bouguer, reduced‐to‐pole magnetic, and trend‐surface‐separated residual gravity–magnetic anomaly maps indicate the possibility of highly altered zone(s) on the northern, southeastern, and southwestern parts of the Beldih mine. The gradient resistivity survey on either side of the mine has also revealed the correlation of low‐resistivity anomalies with low‐gravity and moderately high magnetic anomalies. In particular, the anomalies and modeled subsurface features along profile P6 perfectly match with subsurface geology and uranium mineralization at depth. Two‐dimensional and three‐dimensional residual gravity models along P6 depict the presence of highly altered vertical sheet of low‐density material up to a depth of ~200 m. The drilling results along the same profile confirm the continuation of uranium mineralization zone for the low‐density material. This not only validates the findings of the gravity model but also establishes the geophysical signatures for uranium mineralization as low‐gravity, moderate‐to‐high magnetic, and low‐resistivity values in this region. This study enhances the scope of further integrated geophysical investigations along the South Purulia Shear Zone to delineate suitable target areas for uranium exploration.  相似文献   

    15.
    The measurement of wavetilt is diagnostic for determining the electrical characteristics of the upper layers of the ground at VLF and LF frequency ranges. Theoretical and field studies have indicated that electric wavetilt using the transverse magnetic (TM) waves detects lateral inhomogeneities virtually instantly as abrupt changes in electrical properties are encountered. Theoretical studies have also indicated that magnetic wavetilt measurements using transverse electric (TE) waves are superior to electric wavetilts for such purposes. An experimental survey was conducted at two locations near Atikokan, Ontario, to verify the theoretical predictions. The survey area, forming a part of a large granitic pluton, was mapped earlier by various geophysical techniques, including the ground VLF-EM method, to detect weak conductors formed either by the presence of fractures in the bedrock filled with water and/or clay, or overburden filling bedrock depressions. A small, multi-turn, horizontal loop was used during the survey as the transmitter to generate TE waves at eleven frequencies from 10.7 to 58.5 kHz. The magnetic wavetilt measurements detected all previously known conductors at the two locations. In addition, the survey detected several weak conductors that were missed by the VLF survey. Thus, the survey indicated the usefulness of magnetic wavetilt results for detection of weak conductors at shallow depths, which may have application in engineering geophysical surveys. The multi-frequency wavetilt data also provided some indications of the depth and depth extent of such conductors.  相似文献   

    16.
    Electromagnetic (EM) techniques are the most commonly used geophysical methods in mineral exploration. However, the use of EM measurements for environmental and engineering applications like the detection of contaminant plumes or the exploration of waste sites is relatively new.The reason for the success of the application of EM methods to environmental problems lies in the variation of conductivity caused by different geometry of pore fluids and clay contents in rocks, and by the presence of organic and inorganic contaminants.Many EM methods/instruments used for mapping near surface geology exist and nowadays they play a central role in environmental geophysics. In general, these methods can be classified in two blocks: EM methods using a plane wave source of excitation and EM methods using a controlled source like a magnetic dipole or a loop source. The Very Low Frequency (VLF, VLF-R) and Radiomagnetotelluric (RMT) methods are chosen as representative methods for plane wave techniques, while horizontal loop EM methods operating in low induction numbers (EM31, EM34) and Transient Electromagnetic methods (TEM) are chosen as representatives of magnetic dipole or loop source techniques. Basic principles, advantages and disadvantages of each technique as well as their connection to specific environmental problems will be discussed.Different successful applications of these methods are reported in the literature. However, this review will focus on three major subjects: waste site exploration, detection of contaminated earth layers, and groundwater exploration. Case histories are presented illustrating the suitability of EM methods for solving such problems.  相似文献   

    17.
    A simple filter is developed which transforms VLF-EM real magnetic field transfer functions into apparent resistivities. It is based on the relationship between the horizontal derivative of the surface electric field and the vertical magnetic field at the surface of a two-dimensional earth model. The performance of this simple autoregressive filter is tested for modelled and real survey data. The technique yields profiles of apparent resistivity very similar, both in magnitude and in wavelength, to those which would have been obtained using VLF-EM resistivity measurements or d.c. resistivity profiling. This low-pass filter has the advantage of reducing high-wavenumber noise in the data; therefore only the major features of the VLF-EM profile are displayed.  相似文献   

    18.
    Integrated geophysical surveys using vertical electrical sounding (VES), very low frequency (VLF) EM, radiation counting, total magnetic field and self-potential (SP) measurements are carried out to characterize the geothermal area around a hot spring in the Nayagarh district, Orissa, India that lies in the East Indian geothermal province. The study was performed to delineate the fracture pattern, contaminated groundwater movement and possible heating source. VES interpretations suggest a three- to four-layer structure in the area. Resistivity survey near the hot spring suggests that weathered and fractured formations constitute the main aquifer system and extend to 60 m depth. Current flow measured at various electrode separations normalized by the applied voltage suggests that fractures extend to a greater depth. Detailed VLF study shows that fractures extend beyond 70 m depth. VLF anomaly has also very good correlation with the total magnetic field measured along the same profiles. Study results suggest that a gridded pattern of VLF survey could map the underground conductive fracture zones that can identify the movement of contaminated groundwater flow. Therefore, precautionary measures can be taken to check further contamination by delineating subsurface conducting structures. Self potential (SP) measured over the hot spring does not show a large anomaly in favor of the presence of a sulphide mineral body. A small positive (5–15mV) SP anomaly is measured which may be streaming potential due to subsurface fluid flow. A high radiation is measured about four kilometers from the hot spring, suggesting possible radiogenic heating. However, the exact nature of the heating source and its depth is not known in the area. Deep resistivity followed by a magneto-telluric survey could reveal the deeper structures.  相似文献   

    19.
    Summary
    A ground-water study carried out in the Serowe area of eastern Botswana between 1985–1988 has provided the opportunity to evaluate the role of a multiparameter low-level airborne geophysical survey in a hydrogeological investigation. The survey included magnetic, VLF (very low frequency), and coaxial EM (electromagnetic) measurements. In total, 7,500 line kilometers were flown over an area of 3,300 km2 with a nominal ground clearance of 20 m and a line spacing of 400 m.
    The main aquifer, the Ntane Sandstone Formation (Karoo age), is confined between mudstones below and basalt above, and is broken into a series of graben and horst structures by numerous E-W striking faults. All bedrock, however, is completely masked by a 20–60 m thick overburden of sands, calcretes, silcretes, and sandstones known collectively as the Kalahari beds.
    Airborne magnetic and VLF geophysical surveys have been used to penetrate this masking cover. Images and stacked profiles obtained from the survey revealed structural and geological features of major hydrogeological significance. This provided the information necessary for the formulation of a conceptual model.
    The results helped guide the subsequent exploration drilling program in an efficient and effective manner, cutting down the need for extensive ground surveys. The investigation confirmed the availability of a 35,000 m3/day resource, sustainable for a 25-year period. Highest yields were obtained from fracture zones associated with VLF anomalies. Potential wellfields were identified in confined sections of the aquifer, with production boreholes to be sited, where possible, on fractures associated with VLF anomalies.  相似文献   

    20.
    Large rock slope failures from near‐vertical cliffs are an important geomorphic process driving the evolution of mountainous landscapes, particularly glacially steepened cliffs. The morphology and age of a 2·19 × 106 m3 rock avalanche deposit beneath El Capitan in Yosemite Valley indicates a massive prehistoric failure of a large expanse of the southeast face. Geologic mapping of the deposit and the cliff face constrains the rock avalanche source to an area near the summit of ~8·5 × 104 m2. The rock mass free fell ~650 m, reaching a maximum velocity of 100 m s?1, impacted the talus slope and spread across the valley floor, extending 670 m from the base of the cliff. Cosmogenic beryllium‐10 exposure ages from boulders in the deposit yield a mean age of 3·6 ± 0·2 ka. The ~13 kyr time lag between deglaciation and failure suggests that the rock avalanche did not occur as a direct result of glacial debuttressing. The ~3·6 ka age for the rock avalanche does coincide with estimated late Holocene rupture of the Owens Valley fault and/or White Mountain fault between 3·3 and 3·8 ka. The coincidence of ages, combined with the fact that the most recent (AD 1872) Owens Valley fault rupture triggered numerous large rock falls in Yosemite Valley, suggest that a large magnitude earthquake (≥M7.0) centered in the south‐eastern Sierra Nevada may have triggered the rock avalanche. If correct, the extreme hazard posed by rock avalanches in Yosemite Valley remains present and depends on local earthquake recurrence intervals. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号