首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a stable procedure for defining and measuring the two point angular autocorrelation function,   w (θ) =[θ/θ0( V )]−Γ  , of faint  (25 < V < 29)  , barely resolved and unresolved sources in the Hubble Space Telescope Great Observatories Origins Deep Survey and Ultra Deep Field data sets. We construct catalogues that include close pairs and faint detections. We show, for the first time, that, on subarcsec scales, the correlation function exceeds unity. This correlation function is well fit by a power law with index  Γ≈ 2.5  and a  θ0= 10−0.1( V −25.8) arcsec  . This is very different from the values of  Γ≈ 0.7  and  θ0( r ) = 10−0.4( r −21.5) arcsec  associated with the gravitational clustering of brighter galaxies. This observed clustering probably reflects the presence of giant star-forming regions within galactic-scale potential wells. Its measurement enables a new approach to measuring the redshift distribution of the faintest sources in the sky.  相似文献   

2.
We compute the temporal profiles of the gamma-ray burst pulse in the four Burst and Transient Source Experiment (BATSE) Large Area Detector (LAD) discriminator energy channels, with the relativistic curvature effect of an expanding fireball being explicitly investigated. Assuming an intrinsic 'Band' shape spectrum and an intrinsic energy-independent emission profile, we show that merely the curvature effect can produce detectable spectral lags if the intrinsic pulse profile has a gradually decaying phase. We examine the spectral lag's dependences on some physical parameters, such as the Lorentz factor Γ, the low-energy spectral index, α, of the intrinsic spectrum, the duration of the intrinsic radiation   t 'd  and the fireball radius R . It is shown that approximately the lag  ∝Γ−1  and  ∝ t 'd  , and a spectrum with a more extruded shape (a larger α) causes a larger lag. We find no dependence of the lag on R . Quantitatively, the lags produced from the curvature effect are marginally close to the observed ones, while larger lags require extreme physical parameter values, e.g.  Γ < 50  , or  α > −0.5  . The curvature effect causes an energy-dependent pulse width distribution but the energy dependence of the pulse width we obtained is much weaker than the observed   W ∝ E −0.4  one. This indicates that some intrinsic mechanism(s), other than the curvature effect, dominates the pulse narrowing of gamma-ray bursts.  相似文献   

3.
We construct analytically stationary global configurations for both aligned and logarithmic spiral coplanar magnetohydrodynamics (MHD) perturbations in an axisymmetric background MHD disc with a power-law surface mass density  Σ0∝ r −α  , a coplanar azimuthal magnetic field   B 0∝ r −γ  , a consistent self-gravity and a power-law rotation curve   v 0∝ r −β  , where v 0 is the linear azimuthal gas rotation speed. The barotropic equation of state  Π∝Σ n   is adopted for both MHD background equilibrium and coplanar MHD perturbations where Π is the vertically integrated pressure and n is the barotropic index. For a scale-free background MHD equilibrium, a relation exists among  α, β, γ  and n such that only one parameter (e.g. β) is independent. For a linear axisymmetric stability analysis, we provide global criteria in various parameter regimes. For non-axisymmetric aligned and logarithmic spiral cases, two branches of perturbation modes (i.e. fast and slow MHD density waves) can be derived once β is specified. To complement the magnetized singular isothermal disc analysis of Lou, we extend the analysis to a wider range of  −1/4 < β < 1/2  . As an illustrative example, we discuss specifically the  β= 1/4  case when the background magnetic field is force-free. Angular momentum conservation for coplanar MHD perturbations and other relevant aspects of our approach are discussed.  相似文献   

4.
We use non-linear scaling relations (NSRs) to investigate the effects arising from the existence of negative correlations on the evolution of gravitational clustering in an expanding universe. It turns out that such anticorrelated regions have important dynamical effects on all scales. In particular, the mere existence of negative values for the linear two-point correlation function ξ¯ L over some range of scales starting from l = L 0 implies that the non-linear correlation function is bounded from above at all scales x < L 0 . This also results in the relation ξ¯   ∝  x −3 , at these scales, at late times, independent of the original form of the correlation function. Current observations do not rule out the existence of negative ξ¯ for 200  h −1 Mpc≲ ξ¯ ≲1000  h −1 Mpc; the present work may thus have relevance for the real Universe. The only assumption made in the analysis is the existence of NSR; the results are independent of the form of the NSR as well as of the stable clustering hypothesis.  相似文献   

5.
6.
We derive the asymptotic mass profile near the collapse centre of an initial spherical density perturbation, δ ∝ M − ε , of collisionless particles with non-radial motions. We show that angular momenta introduced at the initial time do not affect the mass profile. Alternatively, we consider a scheme in which a particle moves on a radial orbit until it reaches its turnaround radius, r ∗. At turnaround the particle acquires an angular momentum L =ℒ√ GM * r * per unit mass, where M ∗ is the mass interior to r ∗. In this scheme, the mass profile is M ∝ r 3/(1+3 ε ) for all ε >0 , in the region r / r t ≪ℒ , where r t is the current turnaround radius. If ℒ≪1 then the profile in the region ℒ≪ r / r t ≪1 is M ∝ r for ε <2/3 , and remains M ∝ r 3/(1+3 ε ) for ε ≥2/3 . The derivation relies on a general property of non-radial orbits which is that the ratio of the pericentre to apocentre is constant in a force field k ( t ) r n with k ( t ) varying adiabatically.  相似文献   

7.
We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Δ z =0.4 we measured the angular correlation function w ( θ ) as a function of redshift up to z ∼4.8. From these measurements we derive the trend of the correlation length r 0. We find that r 0( z ) is roughly constant with look-back time up to z ≃2, and then increases to higher values at z ≳2.4. We estimate the values of r 0, assuming ξ ( r , z )=[ r r 0( z )]− γ , γ =1.8 and various geometries. For Ω0=1 we find r 0( z =3)≃7.00±4.87  h −1 Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.  相似文献   

8.
Using a sample of almost 7000 strong Mg  ii absorbers with   W 0 > 1 Å  and  0.4 < z < 2.2  detected in the SDSS DR4 data set, we investigate the gravitational lensing and dust extinction effects they induce on background quasars. After carefully quantifying several selection biases, we isolate the reddening effects as a function of redshift and absorber rest equivalent width, W 0. We find the amount of dust to increase with cosmic time as  τ( z ) ∝ (1 + z )−1.1±0.4  , following the evolution of cosmic star density or integrated star formation rate. We measure the reddening effects over a factor of 30 in E ( B − V ) and we find that  τ∝ ( W 0)1.9±0.1  , providing us with an important scaling for theoretical modelling of metal absorbers. We also measure the dust-to-metal ratio and find it similar to that of the Milky Way. In contrast to previous studies, we do not detect any gravitational magnification by Mg  ii systems. We measure the upper limit  μ < 1.10  and discuss the origin of the discrepancy. Finally, we estimate the fraction of absorbers missed due to extinction effects and show that it rises from 1 to 50 per cent in the range  1 < W 0 < 6 Å  . We parametrize this effect and provide a correction for recovering the intrinsic  ∂ N /∂ W 0  distribution.  相似文献   

9.
To investigate further the comparison between active galactic nuclei (AGN) and black hole X-ray binaries, we have studied the main X-ray variability properties of the Seyfert 1 galaxy Mrk 335. We put particular emphasis on the X-ray time lags, which is a potentially important diagnostic of physical models. From a 100 ks observation by XMM–Newton , we show that the power spectrum of this source is well fitted by a bending power-law model, and the bend time-scale T b is precisely at the value predicted by the T b versus Hβ linewidth relation of McHardy et al. Variations in different energy bands show time-scale-dependent time lags, where higher energy bands lag lower ones. The lag, τ, varies as a function of the Fourier frequency, f , of the variability component in the light curves as  τ∝ f −1  at low frequencies, but there is a sharp cut-off in the lags at a frequency close to the bend frequency in the power spectrum. Similar behaviour is seen in black hole X-ray binary systems. The length of the time lags increases continuously with energy separation, in an almost loglinear relation. We show that the lag spectra can be produced by fluctuations propagating through the accretion flow as long as the energy spectrum of the X-ray emitting region hardens towards the centre.  相似文献   

10.
We have derived the angular correlation function of a sample of 2096 sources detected in the ROSAT All-Sky Survey (RASS) Bright Source Catalogue, in order to investigate the clustering properties of active galactic nuclei (AGN) in the local Universe. Our sample is constructed by rejecting all known stars, as well as extended X-ray sources. Areas with | b |<30° and declination δ <−30° are also rejected owing to the high or uncertain neutral hydrogen absorption. Cross-correlation of our sample with the Hamburg/RASS optical identification catalogue suggests that the vast majority of our sources are indeed AGN. A 4.1 σ correlation signal between 0° and 8° was detected with w ( θ <8°)=2.5±0.6×10−2. Assuming a two-point correlation function of the form w ( θ )=( θ θ 0)−0.8, we find θ 0=0062. Deprojection on three dimensions, using Limber's equation, yields a spatial correlation length of r 0≈6.0±1.6  h −1 Mpc. This is consistent with the AGN clustering results derived at higher redshifts in optical surveys and suggests a comoving model for the clustering evolution.  相似文献   

11.
We have detected the Sunyaev–Zel'dovich (SZ) increment at 850 μm in two galaxy clusters (Cl 0016+16 and MS 1054.4−0321) using the Submillimetre Common User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. Fits to the isothermal β model yield a central Compton y parameter of  (2.2 ± 0.7) × 10−4  and a central 850-μm flux of  Δ I 0= 2.2 ± 0.7 mJy beam−1  in Cl 0016. This can be combined with decrement measurements to infer   y = (2.38 ±0.360.34) × 10−4  and   v pec= 400±19001400 km s−1  . In MS 1054 we find a peak 850-μm flux of  Δ I 0= 2.0 ± 1.0 mJy beam−1  and   y = (2.0 ± 1.0) × 10−4  . To be successful such measurements require large chop throws and non-standard data analysis techniques. In particular, the 450-μm data are used to remove atmospheric variations in the 850-μm data. An explicit annular model is fit to the SCUBA difference data in order to extract the radial profile, and separately fit to the model differences to minimize the effect of correlations induced by our scanning strategy. We have demonstrated that with sufficient care, SCUBA can be used to measure the SZ increment in massive, compact galaxy clusters.  相似文献   

12.
This is the second paper of a series where we study the clustering of luminous red galaxies (LRG) in the recent spectroscopic Sloan Digital Sky Survey (SDSS) data release, DR6, which has 75 000 LRG covering over  1 Gpc3  h −3  for  0.15 < z < 0.47  . Here, we focus on modelling redshift-space distortions in  ξ(σ, π)  , the two-point correlation in separate line-of-sight and perpendicular directions, at small scales and in the line-of-sight. We show that a simple Kaiser model for the anisotropic two-point correlation function in redshift space, convolved with a distribution of random peculiar velocities with an exponential form, can describe well the correlation of LRG on all scales. We show that to describe with accuracy the so-called 'fingers-of-God' (FOG) elongations in the radial direction, it is necessary to model the scale dependence of both bias b and the pairwise rms peculiar velocity σ12 with the distance. We show how both quantities can be inferred from the  ξ(σ, π)  data. From   r ≃ 10 Mpc  h −1  to   r ≃ 1 Mpc  h −1  , both the bias and σ12 are shown to increase by a factor of 2: from   b = 2  to 4 and from  σ12= 400  to  800 km s−1  . The latter is in good agreement, within a 5 per cent accuracy in the recovered velocities, with direct velocity measurements in dark matter simulations with  Ωm= 0.25  and  σ8= 0.85  .  相似文献   

13.
We used the detected pulsation modes and adiabatic pulsation models to do seismology of the class of ZZ Ceti stars and measure the H layer mass for 83 stars. We found the surface hydrogen layer to be within the range  10−9.5≥ M H/ M *≥ 10−4  , with an average of   M H/ M *= 10−6.3  , which is thinner than the predicted value of   M H/ M *= 10−4  , indicating that the stars lose more mass during their evolution than previously expected. These results are preliminary and do not include the possible effects of realistic C/O profiles on the fits.  相似文献   

14.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

15.
We study the polarization properties of relativistic reconfinement shocks with chaotic magnetic fields. Using our hydrodynamical model of their structure, we calculate synthetic polarization maps, longitudinal polarization profiles and discuss the spatially averaged polarization degree as a function of jet half-opening angle  Θ j   , jet Lorentz factor  Γ j   and observer inclination angle to the jet axis  θobs  . We find that for  θobs≲Θ j   the wave electric vectors are parallel in the vicinity of the structure ends and perpendicular in between, while for  θobs > Θ j   the polarization can only be perpendicular. The spatially averaged polarization degree does not exceed 30 per cent. Parallel average polarization, with polarization degrees lower than 10 per cent, has been found for  θobs < Θ j   under the condition  Γ j Θ j > 1  . As earlier works predicted the parallel polarization from relativistic conical shocks, we explain our results by discussing conical shocks with divergent upstream flow.  相似文献   

16.
We construct a new sample of ∼1700 solar neighbourhood halo subdwarfs from the Sloan Digital Sky Survey (SDSS), selected using a reduced proper-motion diagram. Radial velocities come from the SDSS spectra and proper motions from the light-motion curve catalogue of Bramich et al. Using a photometric parallax relation to estimate distances gives us the full phase-space coordinates. Typical velocity errors are in the range  30–50 km s−1  . This halo sample is one of the largest constructed to date and the disc contamination is at a level of ≲1 per cent. This enables us to calculate the halo velocity dispersion to excellent accuracy. We find that the velocity dispersion tensor is aligned in spherical polar coordinates and that  (σ r , σφ, σθ) = (143 ± 2, 82 ± 2, 77 ± 2) km s−1  . The stellar halo exhibits no net rotation, although the distribution of   v φ  shows tentative evidence for asymmetry. The kinematics are consistent with a mildly flattened stellar density falling with distance like   r −3.75  .
Using the full phase-space coordinates, we look for signs of kinematic substructure in the stellar halo. We find evidence for four discrete overdensities localized in angular momentum and suggest that they may be possible accretion remnants. The most prominent is the solar neighbourhood stream previously identified by Helmi et al., but the remaining three are new. One of these overdensities is potentially associated with a group of four globular clusters (NGC 5466, NGC 6934, M2 and M13) and raises the possibility that these could have been accreted as part of a much larger progenitor.  相似文献   

17.
We report further UKIRT spectroscopic observations of Sakurai's object (V4334 Sgr) made in 1999 April/May in the 1–4.75 μm range, and find that the emission is dominated by amorphous carbon at T d~600 K. The estimated maximum grain size is 0.6 μm, and the mass lower limit is 1.7±0.2×10−8 M to 8.9±0.6×10−7 M for distances of 1.1–8 kpc. For 3.8 kpc the mass is 2.0±0.1×10−7 M.
We also report strong He  i emission at 1.083 μm, in contrast to the strong absorption in this line in 1998. We conclude that the excitation is collisional, and is probably caused by a wind, consistent with the P Cygni profile observed by Eyres et al. in 1998.  相似文献   

18.
We present measurements of the clustering properties of galaxies in the field of redshift range 0.5 ≲ z ≲ 1.5 Ultra Steep Spectrum radio sources selected from the Sydney University Molonglo Sky Survey and the National Radio Astronomy Observatories Very Large Array Sky Survey. Galaxies in these USS fields were identified in deep near-infrared observations, complete down to   K s= 20  , using the IRIS2 instrument at the Anglo-Australian Telescope. We used the redshift distribution of   K s < 20  galaxies taken from Cimatti et al. (2002) to constrain the correlation length r 0. We find a strong correlation signal of galaxies with   K s < 20  around our USS sample. A comoving correlation length   r 0= 14.0 ± 2.8  h −1 Mpc  and γ= 1.98 ± 0.15 are derived in a flat cosmological model universe.
We compare our findings with those obtained in a cosmological N -body simulation populated with galform semi-analytic galaxies. We find that clusters of galaxies with masses in the range   M = 1013.4–14.2  h −1 M  have a cluster–galaxy cross-correlation amplitude comparable to those found between the USS hosts and galaxies. These results suggest that distant radio galaxies are excellent tracers of galaxy overdensities and pinpoint the progenitors of present day rich clusters of galaxies.  相似文献   

19.
We present a new determination of the local volume-averaged star formation rate from the 1.4-GHz luminosity function of star forming galaxies. Our sample, taken from the   B ≤12  Revised Shapley–Ames catalogue (231 normal spiral galaxies over an effective area of 7.1 sr) has ≃100 per cent complete radio detections and is insensitive to dust obscuration and cirrus contamination. After removal of known active galaxies, the best-fitting Schechter function has a faint-end slope of  −1.27±0.07  in agreement with the local H α luminosity function, characteristic luminosity   L ∗=(2.6±0.7)×1022 W Hz−1  and density   φ ∗=(4.8±1.1)×10−4 Mpc−3.  The inferred local radio luminosity density of  (1.73±0.37±0.03)×1019 W Hz−1 Mpc−3  (Poisson noise, large-scale structure fluctuations) implies a volume-averaged star formation rate ∼2 times larger than the Gallego et al. H α estimate, i.e.   ρ 1.4 GHz=(2.10±0.45±0.04)×10−2 M yr−1 Mpc−3  for a Salpeter initial mass function from  0.1–125 M  and Hubble constant of 50 km s−1 Mpc−1. We demonstrate that the Balmer decrement is a highly unreliable extinction estimator, and argue that optical–ultraviolet (UV) star formation rates (SFRs) are easily underestimated, particularly at high redshift.  相似文献   

20.
We study the size and shape of low-density regions in the local Universe, which we identify in the smoothed density field of the PSCz flux-limited IRAS galaxy catalogue. After quantifying the systematic biases that enter the detection of voids using our data set and method, we identify, using a smoothing length of 5  h −1 Mpc, 14 voids within 80  h −1 Mpc (having volumes 103  h −3 Mpc3) and, using a smoothing length of 10  h −1 Mpc, eight voids within 130  h −1 Mpc (having volumes  8×103 h−3 Mpc3)  . We study the void size distribution and morphologies and find that there is roughly an equal number of prolate and oblate-like spheroidal voids. We compare the measured PSCz void shape and size distributions with those expected in six different cold dark matter (CDM) models and find that only the size distribution can discriminate between models. The models preferred by the PSCz data are those with intermediate values of   σ 8(≃0.83)  , independent of cosmology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号