首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Summary Spectrometric experiments performed, in November 1976, within the framework of the Latitude Survey Mission on board the NASA Convair 990 from Ames Research Center are briefly deseribed. The results presented concern odd nitrogen molecules, HCl and water vapor. In terms of vertical column density, HNO3 is predominant over NO+NO2 at all latitudes higher than 40 degrees. A seasonal variation of NO2 abundance is observed, with larger values in the summer hemisphere at high latitude. The mean zenith column density of HCl above 11 km is 1.5×1015 mol.cm–2, with no evidence for any seasonal or climatic variation. Local number densities as high as 1.4×1010 mol.cm–3 for HNO3 and 5.4×1014 mol.cm–3 for water vapor have been measured during the same flight near 11 km.  相似文献   

2.
Height distribution of the stratospheric aerosol extinction coefficient was measured in the altitude range 10 to 20 km by a balloon-borne multi-color sunphotometer in May 1978. It is demonstrated that detailed structures of the distribution of stratospheric aerosol can be remotely measured by the solar occultation method as well as by lidar andin situ particle counter observations. In the aerosol layer appearing at 18 km altitude the extinction coefficient at 800–1000 nm wavelength reached to 3×10–7 m–1, which was reasonable compared with lidar observations. Wavelength dependence of the aerosol optical depth was crudely estimated to be proportional to –1.5.  相似文献   

3.
Physical, chemical and isotopic parameters were measured in fumaroles at the Vulcano crater and in drowned fumaroles near the beach. The data were used to define boundary conditions for possible conceptual models of the system.Crater fumaroles: time variations of CO2 and SO2 concentrations indicate mixing of saline gas-rich water with local fresh water. Cl/Br ratios of 300– 400 favour sea-water as a major source for Cl, Brand part of the water in the fumaroles. Cl concentrations and D values revealed, independently, amixing of 0.75 sea-water with 0.25 local freshwaterin furmarole F-5 during September 1982.Patterns of parameter correlation and mass balances reveal that CO2, S, NH3 and B originate from sources other than sea water. The CO2 value of 13C = – 2%o favours, at least partial, origin from decomposition of sedimentary rocks rather than mantle-derived material. Radiogenic4He(1.3 × lO–3 ccSTP/g water) and radiogenic40Ar(10.6 × 10–4 ccSTP/g water) are observed, (4He/40Ar)radiogenic = 1.2, well in the range of values observed in geothermal systems.Drowned fumaroles: strongly bubbling gas at a pond and at the beachappears to have the same origin and initial compositionas the crater fumaroles (2 km away). The fumarolic gas is modified by depletion of the reactive gases, caused by dissolution in shallow-water. Atmospheric Ne, Ar, Kr and Xe are addeden route, some radiogenic He and Ar are maintained. The Vulcano system seems to be strongly influenced by the contribution of sea-water and decomposition of sedimentary rocks. Evidence of magmatic contributions is mainly derived from heat.  相似文献   

4.
We propose a thermal model of the subducting Ionian microplate. The slab sinks in an isothermal mantle, and for the boundary conditions we take into account the relation between the maximum depth of seismicity and the thermal parameter Lth of the slab, which is a product of the age of the subducted lithosphere and the vertical component of the convergence rate. The surface heat-flux dataset of the Ionian Sea is reviewed, and a convective geotherm is calculated in its undeformed part for a surface heat flux of 42 mW m–2, an adiabatic gradient of 0.6 mK m–1, a mantle kinematic viscosity of 1017 m2 s–1 and an asthenosphere potential temperature of 1300°C. The calculated temperature-depth distribution compared to the mantle melting temperature indicates the decoupling limit between lithosphere and asthenosphere occurs at a depth of 105 km and a temperature of 1260°C. A 70–km thick mechanical boundary layer is found. By considering that the maximum depth of the seismic events within the slab is 600 km, a Lth of 4725 km is inferred. For a subduction rate equal to the spreading rate, the corresponding assimilation and cooling times of the microplate are about 7 and 90 Myr, respectively. The thermal model assumes that the mantle flow above the slab is parallel and equal to the subducting plate velocity of 6 cm yr–1, and ignores the heat conduction down the slab dip. The critical temperature, above which the subduced lithosphere cannot sustain the stress necessary to produce seismicity, is determined from the thermal conditions governing the rheology of the plate. The minimum potential temperature at the depth of the deepest earthquake in the slab is 730°C.  相似文献   

5.
Summary If needle-shaped ice crystals are grown in an atmosphere containing traces of nitrous gases, the amount of electrical charge generated when sharp crystal points break away, is between 10 and 50 times as high as in the case of crystals grown in absence of nitrous gases A definite relation has been found to exist between the NO 3 ion concentration of the ice crytals and the amount of charge (average value 2.7×10–8, maximum value 13×10–8 coulombs per gram of ice splinters) generated upon fragmentation. The relation found is possibly of importance with respect to thunderstorm electricity generation.Physikalisch-Bioklimatische Forschungsstelle der Fraunhofer-Gesellschaft, Garmisch-Partenkirchen.  相似文献   

6.
The EISCAT VHF radar (69.4°N, 19.1°E) has been used to record vertical winds at mesopause heights on a total of 31 days between June 1990 and January 1993. The data reveal a motion field dominated by quasi-monochromatic gravity waves with representative apparent periods of 30–40 min, amplitudes of up to 2.5 m s–1 and large vertical wavelength. In some instances waves appear to be ducted. Vertical profiles of the vertical-velocity variance display a variety of forms, with little indication of systematic wave growth with height. Daily mean variance profiles evaluated for consecutive days of recording show that the general shape of the variance profiles persists over several days. The mean variance evaluated over a 10 km height range has values from 1.2 m2s–2 to 6.5 m2s–2 and suggests a semi-annual seasonal cycle with equinoctial minima and solsticial maxima. The mean vertical wavenumber spectrum evaluated at heights up to 86 km has a slope (spectral index) of -1.36 ± 0.2, consistent with observations at lower heights but disagreeing with the predictions of a number of saturation theories advanced to explain gravity-wave spectra. The spectral slopes evaluated for individual days have a range of values, and steeper slopes are observed in summer than in winter. The spectra also appear to be generally steeper on days with lower mean vertical-velocity variance.  相似文献   

7.
Pyroclastic flow emplacement is strongly influenced by eruption column height. A surface along which kinetic energy is zero theoretically connects the loci of eruption column collapse with all coeval ignimbrite termini. This surface is reconstructed as a two-dimensional energy line for the 1912 Katmai pyroclastic flow in the Valley of Ten Thousand Smokes from mapped flow termini and the runup of the ignimbrite onto obstructions and through passes. Extrapolation of the energy line to the vicinity of the source vent at Novarupta suggests the eruption column which generated the ignimbrite eruption was approximately 425 m high. The 1912 pyroclastic flow travelled about 25 km downvalley. Empirical velocity data calculated from runup elevations and surveyed centrifugal superelevations indicate initial velocities near Novarupta were greater than 79–88 m s–1. The flow progressively decelerated and was travelling only 2–8 m s–1 when it crossed a moraine 16 km downvalley. The constant slope of the energy line away from Novarupta suggests the flow was systematically slowed by internal and basal friction. Using a simple physical model to calculate flow velocities and a constant kinetic friction coefficient (Heim coefficient) of 0.04 derived from the reconstructed energy line, the flow is estimated to have decelerated at an average rate of –0.16 m s–2 and to have taken approximately 9.5 minutes to travel 25 km down the Valley of Ten Thousand Smokes. The shear strength of the flowing ignimbrite at the moraine was approximately 0.5 kPa, and its Bingham viscosity when it crossed the moraine was 3.5 × 103 P. If the flow was Newtonian, its viscosity was 4.2 × 103 P. Reynolds and Froude numbers at the moraine were only 41–62 and 0.84–1.04, respectively, indicating laminar, subcritical flow.  相似文献   

8.
Summary The surface thermal flux of the continental margins of the northwestern Mediterranean Sea is interpreted on the basis of a 1-D instantaneous pure shear stretching model of the lithosphere in terms of three components: the background heat flowing out from the asthenosphere (38 mW m–2), the transient contribution depending on the rift age and extension amount (35 mW m–2 at the most), and the contribution due to the radiogenic elements of the lithosphere. The radiogenic component is estimated at the continental margins of the Ligurian-Provençal basin and Valencia trough, and in the surrounding mainland areas by means of available data of surface heat generation from Variscan Corsica, Maures-Estérel and the Central Massif along with a geophysical-petrological relationship between heat production and seismic velocity. The lithosphere radiogenic heat contribution ql decreases with the thinning factor according to the exponential law: ql() = a exp(-b), in which factor b is greater for that part of the lithosphere below the uppermost 10 km. Considering also the heat generated by radioactive isotopes in sediments, the stable Variscan lithosphere produces an average thermal flux of 30 mW m–2 which decreases by about one half where the lithosphere is thinned by one third. Although the surface heat generation is 2·1 – 3·3 µW m–3 in the Maures-Estérel massif — excepting small outcrops of dioritic rocks with lower heat production — and 1·8 µW m–3 for most of Corsica, the radiogenic heating within the lithosphere for such areas is nearly the same and does not explain the higher heat flux of the Corsica margin. This asymmetric thermal pattern with surface heat flux which is 10 – 15 mW m–2 higher than predictions is probably of upper mantle origin, or can be ascribed to penetrative magmatism.  相似文献   

9.
The rheological properties of mantle materials are being investigated up to pressures of 16 GPa and temperatures of 1600°C for times up to 24 h, using a new sample assembly for the 6–8 multi-anvil apparatus. Al2O3 pistons, together with a liquid confining medium, are used to generate deviatoric stress in the specimen. Strain rates are estimated by monitoring the relative displacement of the guide blocks of the multi-anvil apparatus, scaled to the total axial strain of the sample. The applied stress on the sample is estimated using grain size piezometry. Strain rates and flow stresses of approximately 10–4 to 10–6 s–1 and 50 to 250 MPa respectively, are presently attainable.Preliminary results on San Carlos olivine single crystals, partially dynamically recrystallized to a grain size of 10 to 300 m, indicate that the effective viscosity of polycrystalline olivine is consistent with values obtained from olivine single crystal creep laws. Assuming a dislocation creep mechanism (n3.5) with (010)[001] as the dominant slip system, the data are best fit using a creep activation volume of 5 to 10×10–6 m3 mol–1.  相似文献   

10.
Fault dimensions,displacements and growth   总被引:15,自引:0,他引:15  
Maximum total displacement (D) is plotted against fault or thrust width(W) for 65 faults, thrusts, and groups of faults from a variety of geological environments. Displacements range from 0.4 m to 40 km and widths from 150 m to 630 km, and there is a near linear relationship betweenD andW 2. The required compatibility strains (e s) in rocks adjacent to these faults increases linearly withW and with and ranges frome s=2×10–4 toe s=3×10–1. These are permanent ductile strains, which compare with values ofe s=2×10–5 for the elastic strains imposed during single slip earthquake events, which are characterised by a linear relationship between slip (u) andW.The data are consisten with a simple growth model for faults and thrusts, in which the slip in successive events increases by increments of constant size, and which predicts a relationship between displacement and width of the formD=cW 2. Incorporation of constant ductile strain rate into the model shows that the repreat time for slip events remains constant throughout the life of a fault, while the displacement rate increases with time. An internally consistent model withe s=2×10–5, giving repeat times of 160 years and instantaneous displacement rates of 0.02 cm/yr, 0.2 cm/yr, and 2.0 cm/yr when total displacement is 1 m, 100 m, and 10 km, and slip increasing by 0.5 mm with each event, gives a good approximation of the data. The model is also applicable to stable sliding, the slip rate varying with ductile strain rate and withW 2.  相似文献   

11.
Using the FLOWGO thermo-rheological model we have determined cooling-limited lengths of channel-fed (i.e. a) lava flows from Mauna Loa. We set up the program to run autonomously, starting lava flows from every 4th line and sample in a 30-m spatial-resolution SRTM DEM within regions corresponding to the NE and SW rift zones and the N flank of the volcano. We consider that each model run represents an effective effusion rate, which for an actual flow coincides with it reaching 90% of its total length. We ran the model at effective effusion rates ranging from 1 to 1,000 m3 s–1, and determined the cooling-limited channel length for each. Keeping in mind that most flows extend 1–2 km beyond the end of their well-developed channels and that our results are non-probabilistic in that they give all potential vent sites an equal likelihood to erupt, lava coverage results include the following: SW rift zone flows threaten almost all of Mauna Loas SW flanks, even at effective effusion rates as low as 50 m3 s–1 (the average effective effusion rate for SW rift zone eruptions since 1843 is close to 400 m3 s–1). N flank eruptions, although rare in the recent geologic record, have the potential to threaten much of the coastline S of Keauhou with effective effusion rates of 50–100 m3 s–1, and the coast near Anaehoomalu if effective effusion rates are 400–500 m3 s–1 (the 1859 a flow reached this coast with an effective effusion rate of 400 m3 s–1). If the NE rift zone continues to be active only at elevations >2,500 m, in order for a channel-fed flow to reach Hilo the effective effusion rate needs to be 400 m3 s–1 (the 1984 flow by comparison, had an effective effusion rate of 200 m3 s–1). Hilo could be threatened by NE rift zone channel-fed flows with lower effective effusion rates but only if they issue from vents at 2,000 m or lower. Populated areas on Mauna Loas SE flanks (e.g. Phala), could be threatened by SW rift zone eruptions with effective effusion rates of 100 m3 s–1.Editorial responsibility: J Donnelly-Nolan  相似文献   

12.
Quantitative measurements of crystal size distributions (CSDs) have been used to obtain kinetic information on crystallization of industrial compounds (Randolph and Larson 1971) and more recently on Hawaiian basalts (Cashman and Marsh 1988). The technique is based on a population balance resulting in a differential equation relating the population densityn of crystals to crystal sizeL, i.e., at steady staten =n o exp(–L/itG), wheren o is nucleation density,G is the average crystal growth rate, is the average growth time, and the nucleation rateJ =n o G. CSD (Inn vsL) plots of plagioclase phenocrysts in 12 samples of Mount St. Helens blast dacite and 14 samples of dacite from the 1980–1986 Mount St. Helens dome are similar and averageG = 9.6 (± 1.1) × 10–3 cm andn o = 1–2 × 106 cm–4. Reproducibility of the measurements was tested by measuring CSDs of 12 sections cut from a single sample in three mutually perpendicular directions; precision of the size distributions is good in terms of relative, but not necessarily absolute values (± 10%). Growth and nucleation rates for plagioclase have been calculated from these measurements using time brackets of = 30–150 years; growth ratesG are 3–10 × 10–12cm/s, and nucleation ratesJ are 5–21 × 10–6/cm3 s.G andJ for Fe-Ti oxides calculated from CSD data areG = 2–13 ± 10–13 cm/sec andJ = 7–33 × 10–5/cm3 s, respectively. The higher nucleation rate and lower growth rate of oxides resulted in a smaller average crystal size than for plagioclase. Sizes of plagioclase microlites (<0.01 mm) in the blast dacite groundmass have been measured from backscatter SEM photographs. Nucleation of these microlites was probably triggered by intrusion of material into the cone of Mount St. Helens in spring 1980. This residence time of 52 days gives minimum crystallization estimates ofG = 1–3 × 10–11 cm/s andJ = 9–16 × 1O3/cm3 s. The skeletal form of the microlites provides evidence for nucleation and growth at high values of undercooling (T) relative to the phenocrysts. A comparison of nucleation and growth rates for the two crystal populations (phenocrysts vs microlites) suggests that while growth rate seems to be only slightly affected by changes inT, nucleation rate is a very strong function of undercooling. A comparison of plagioclase nucleation and growth rates measured in the Mount St. Helens dacite and in basalt from Makaopuhi lava lake in Hawaii suggests that plagioclase nucleation rates are not as dependent on composition. Groundmass textures suggest that plagioclase microphenocrysts crystallized at depth rather than in the conduit, in the dome, or after extrusion onto the surface. Most of this crystallization appears to be in the form of crystal growth (coarsening) of groundmass microphenocrysts at small degrees of undercooling rather than extensive nucleation of new crystals. This continuous crystallization in a shallow magmatic reservoir may provide the overpressurization needed to drive the continuing periodic domebuilding extrusions, which have been the pattern of activity at Mount St. Helens since December 1980.  相似文献   

13.
Rupture process of the 19 August 1992 Susamyr, Kyrgyzstan, earthquake   总被引:2,自引:2,他引:0  
The Susamyr earthquake of August 19, 1992 in Kyrgyzstan is one of the largest events (Ms = 7.4, Mb = 6.8) of this century in this region of Central Asia. We used broadband and long period digital data from IRIS and GEOSCOPE networks to investigate the source parameters, and their space-time distribution by modeling both body and surface waves. The seismic moment (M0 = 6.8 × 1019 N m) and the focal mechanism were determined from frequency-time analysis (FTAN) of the fundamental mode of long period surface waves (100–250 s). Then, the second order integral moments of the moment-rate release were estimated from the amplitude spectra of intermediate period surface waves(40–70 s). From these moments we determined a source duration of 11–13 s, major and minor axes of the source of 30 km and 10–22 km, respectively; and an instant centroid velocity of 1.2 km/s. Finally, we performed a waveform inversion of P and SH waves at periods from 5–60 s. We found a source duration of 18–20 s, longer than the integral estimate from surface wave amplitudes. All the other focal parameters inverted from body waves are similar to those obtained by surface waves ( = 87° ± 6°, = 49° ± 6°, = 105° ± 3°, h = 14 ± 2 km, and M0 = 5.8 ± 0.7 × 1019 N m). The initial rupture of this shallow earthquake was located at the south-west border of Susamyr depression in the western part of northern Tien Shan. A finite source analysis along the strike suggests a westward propagation of the rupture. The main shock of this event was preceded 2 s earlier by small foreshock. The main event was almost immediately followed by a very strong series of aftershocks. Our surface and body wave inversion results agree with the general seismotectonic features of the region.  相似文献   

14.
The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5–9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s–1 in a laterally constrained (25–50 km wide) jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s–1 and 0.36 × 103 m2 s–1, respectively, during winter, and 11.4 × 103 m2 s–1 and 0.36 x 103 m2 s–1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and across-slope eddy correlations. The mean across-slope velocity associated with mass flux is about 4 × 10–3 m s–1 shelfward across the shelf break during winter and 2 × 10–3 m s–1 during summer. The drifters also sampled local patterns of circulation, and indicate that the source of water for the seasonal Fair Isle and East Shetland currents are the same, and drawn from Atlantic overflows at the Hebrides shelf.  相似文献   

15.
The 2-D crustal velocity model along the Hirapur-Mandla DSS profile across the Narmada-Son lineament in central India (Murty et al., 1998) has been updated based on the analysis of some short and discontinuous seismic wide-angle reflection phases. Three layers, with seismic velocities of 6.5–6.7, 6.35–6.40 and 6.8 km s–1, and upper boundaries located approximately at 8, 17 and 22 km depth respectively, have been identified between the basement (velocity 5.9 km s–1) and the uppermost mantle (velocity 7.8 km s–1). The layer with 6.5–6.7 km s–1 velocity is thin and is less than 2-km deep between the Narmada north (at Katangi) and south (at Jabalpur) faults. The upper crust shows a horst feature between these faults, which indicates that the Narmada zone acts as a ridge between two pockets of mafic intrusion in the upper crust. The Moho boundary, at 40–44 km depth and the intra-crustal layers exhibit an upwarp suggesting that the Narmada faults have deep origins, involving deep-seated tectonics. A smaller intrusive thickness between the Narmada faults, as compared to those beyond these faults, suggests that the intrusive activities on the two sides are independent. This further suggests that the two Narmada faults may have been active at different geological times. The seismic model is constrained by 2-D gravity modeling. The gravity highs on either side of the Narmada zone are due to the effect of the high velocity/high density mafic intrusion at upper crustal level.  相似文献   

16.
Summary The electrode effect could be detected in full magnitude on the Atlantic during the expedition of the research vessel Meteor. The average value of the electric field over the sea surface is about 125 V/m, in about 10 to 100 m over the surface only about 60 V/m. This phenomenon as well as the results of small ion records lead to a value of the air earth current density on the sea of only 0.9×10–12 A/m2, a quarter of the value accepted up to now. With these values the total current of the global air electric circuit will be about 665 A instead of 1500 to 1800 A. The ionosphere potentials over two places in a distance of 8000 km at 15 dates are nearly identical and in the average 280 kV.  相似文献   

17.
The authors conducted a Rn222 survey in wells of the Larderello geothermal field (Italy) and observed considerable variations in concentrations. Simple models show that flow-rate plays an important part in the Rn222 content of each well, as it directly affects the fluid transit time in the reservoirs. Rn222 has been sampled from two wells of the Serrazzano area during flow-rate drawdown tests. The apparent volume of the steam reservoir of each of these two wells has been estimated from the Rn222 concentration versus flow-rate curves.List of symbols Q Flow-rate (kg h–1) - Decay constant of Rn222 (=7.553×10–3 h–1) - Porosity of the reservoir (volume of fluid/volume of rock) - 1 Density of the fluid in the reservoir (kg m–3) - 2 Density of the rock in the reservoir (kg m–3) - M Stationary mass of fluid filling the reservoir (kg). - E Emanating power of the rock in the reservoir (nCi kg rock –1 h–1). - P Production rate of Rn222 in the reservoir: number of atoms of Rn222 (divided by 1.764×107) transferred by the rock to the mass unit of fluid per unit time (nCi kg fluid –1 h–1). - N Specific concentration of Rn222 in the fluid (nCi kg–1) - Characteristic time of the steam reservoir at maximum flow-rate (=M/Q)  相似文献   

18.
The development, testing and application of a dynamic two-dimensional (longitudinal-vertical) mass balance model for dissolved oxygen (DO) and chlorophyll (Chl) for rivers is documented that for the first time accommodates both the oxygen demand and filtering effects of zebra mussels. The test system is a phytoplankton-rich section ( 15 km long) of the Seneca River, NY, that is believed to represent an upper bound of the impact of this exotic invader. Changes in common measures of water quality of the river brought about by the zebra mussel invasion are reviewed and related longitudinal patterns in DO, Chl, and Secchi disc transparency are documented. Model testing is supported by comprehensive measurements of DO, Chl, and various forcing conditions over a three-month period, and independent determinations of several model coefficients. Wide variations in the areal consumption rate of DO (ZOD; g·m–2·d–1) and filtering rate (m3·m–2·d–1) of zebra mussels, as determined through model calibration, occurred over the study period. Values of ZOD in areas with dense zebra mussel populations at times (e.g., > 50 g·m–2·d–1) were an order of magnitude greater than the sediment oxygen demand associated with organically enriched deposits. The value of determinations of these fluxes from model calibration procedures is evaluated within the context of the limitations of protocols presently available to support independent specification of these rates. Model analyses are conducted to evaluate the relative magnitude of source and sink processes for DO and Chl, the potential operation and implications of feedback from low DO levels on oxygen consumption by zebra mussels, and the sensitivity of model simulations to selected sources of uncertainty and variability. Model projections of oxygen resources of the river are presented in a probabilistic format in evaluating reductions in zebra mussel biomass that would be necessary to eliminate violations of standards and regain assimilative capacity.  相似文献   

19.
Geopotential values W of the mean equipotential surfaces representing the mean ocean topography were computed on the basis of four years (1993 - 1996) TOPEX/POSEIDON altimeter data: W = 62 636 854.10m 2 s –2 for the Pacific (P), W = 62 636 858.20m 2 s –2 for the Atlantic (A), W = 62 636 856.28m 2s–2 for the Indian (I) Oceans. The corresponding mean separations between the ocean levels were obtained as follows: A – P = – 42 cm, I– P = – 22 cm, I – A = 20 cm, the rms errors came out at about 0.3 cm. No sea surface topography model was used in the solution.  相似文献   

20.
The influence of plants on atmospheric carbon monoxide and dinitrogen oxide   总被引:1,自引:0,他引:1  
It is shown by laboratory experiments and extensivein-situ measurements that higher plants (Vicia faba, Platanus acerifolia, Fagus silvatica, andPinus silvestris) produce carbon monoxide. The measurements were carried out under natural conditions with respect to the concentrations of O2 and H2O, and temperature. The CO2- and CO-mixing ratios were varied in the ranges 350 to 530 ppm and 3–270 ppb, respectively. The CO-production rates were found to be light dependent with an average value per cm2 of leaf area of 3×10–13 g/sec for a radiation intensity of 5×104 erg/cm2 sec. The production rates are independent of the CO2- and CO-mixing ratios employed in the test atmosphere. Considering the production rate of 3×10–13 g/cm2 sec to be representative for global conditions the total CO-production by plants is estimated to be 0.5–1.0×1014 g/year. In contrast to carbon monoxide atmospheric dinitrogen oxide is not influenced by plants in the same manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号