首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass-transport-deposits (MTDs) and hemipelagic mud interbedded with sandy turbidites are the main sedimentary facies in the Ulleung Basin, East Sea, offshore Korea. The MTDs show similar seismic reflection characteristics to gas-hydrate-bearing sediments such as regional seismic blanking (absence of internal reflectivity) and a polarity reversed base-reflection identical to the bottom-simulating reflector (BSR). Drilling in 2007 in the Ulleung Basin recovered sediments within the MTDs that exhibit elevated electrical resistivity and P-wave velocity, similar to gas hydrate-bearing sediments. In contrast, hemipelagic mud intercalated with sandy turbidites has much higher porosity and correspondingly lower electrical resistivity and P-wave velocity.At drill-site UBGH1-4 the bottom half of one prominent MTD unit shows two bands of parallel fractures on the resistivity log-images indicating a common dip-azimuth direction of about ∼230° (strike of ∼140°). This strike-direction is perpendicular to the seismically defined flow-path of the MTD to the north-east. At Site UBGH1-14, the log-data suggest two zones with preferred fracture orientations (top: ∼250°, bottom: ∼130°), indicating flow-directions to the north-east for the top zone, and north-west for the bottom zone. The fracture patterns may indicate post-depositional sedimentation that gave rise to a preferred fracturing possibly linked to dewatering pathways. Alternatively, fractures may be related to the formation of pressure-ridges common within MTD units.For the interval of observed MTD units, the resistivity and P-wave velocity log-data yield gas hydrate concentrations up to ∼10% at Site UBGH1-4 and ∼25% at Site UBGH1-14 calculated using traditional isotropic theories such as Archie's law or effective medium modeling. However, accounting for anisotropic effects in the calculation to honor observed fracture patterns, the gas hydrate concentration is overall reduced to less than 5%. In contrast, gas hydrate was recovered at Site UBGH1-4 near the base of gas hydrate stability zone (GHSZ). Log-data predict gas hydrate concentrations of 10–15% over an interval of 25 m above the base of GHSZ. The sediments of this interval are comprised of the hemipelagic mud and interbedded thin sandy turbidites, which did contain pore-filling gas hydrate as identified from pore-water freshening and core infra-red imaging. Seismically, this unit reveals a coherent parallel bedding character but has overall faint reflection amplitude. This gas-hydrate-bearing interval can be best mapped using a combination of regular seismic amplitude and seismic attributes such as Shale indicator, Parallel-bedding indicator, and Thin-bed indicator.  相似文献   

2.
The Gas Hydrate Research and Development Organization (GHDO) of Korea successfully accomplished both coring (hydraulic piston and pressure coring) and logging (logging-while-drilling, LWD, and wireline logging) to investigate the presence of gas hydrate during the first deep drilling expedition in the Ulleung Basin, East Sea of Korea (referred to as UBGH1) in 2007. The LWD data from two sites (UBGH1-9, UBGH1-10) showed elevated electrical resistivity (>80 Ω-m) and P-wave velocity (>2000 m/s) values indicating the presence of gas hydrate. During the coring period, the richest gas hydrate accumulation was discovered at these intervals. Based on log data, the occurrence of gas hydrate is primarily controlled by the presence of fractures. The gas hydrate saturation calculated using Archie’s relation shows greater than 60% (as high as ∼90%) of the pore space, although Archie’s equation typically overestimates gas hydrate saturation in near-vertical fractures. The saturation of gas hydrate is also estimated using the modified Biot-Gassmann theory (BGTL) by Lee and Collett (2006). The saturation values estimated rom BGTL are much lower than those calculated from Archie’s equation. Based on log data, the hydrate-bearing sediment section is approximately 70 m (UBGH1-9) to 130 m (UBGH1-10) in thickness at these two sites. This was further directly confirmed by the recovery of gas hydrate samples and pore water freshening collected from deep drilling core during the expedition. LWD data also strongly support the interpretation of the seismic gas hydrate indicators (e.g., vent or chimney structures and bottom-simulating reflectors), which imply the probability of widespread gas hydrate presence in the Ulleung Basin.  相似文献   

3.
《Marine and Petroleum Geology》2012,29(10):1979-1985
The Gas Hydrate Research and Development Organization (GHDO) of Korea successfully accomplished both coring (hydraulic piston and pressure coring) and logging (logging-while-drilling, LWD, and wireline logging) to investigate the presence of gas hydrate during the first deep drilling expedition in the Ulleung Basin, East Sea of Korea (referred to as UBGH1) in 2007. The LWD data from two sites (UBGH1-9, UBGH1-10) showed elevated electrical resistivity (>80 Ω-m) and P-wave velocity (>2000 m/s) values indicating the presence of gas hydrate. During the coring period, the richest gas hydrate accumulation was discovered at these intervals. Based on log data, the occurrence of gas hydrate is primarily controlled by the presence of fractures. The gas hydrate saturation calculated using Archie’s relation shows greater than 60% (as high as ∼90%) of the pore space, although Archie’s equation typically overestimates gas hydrate saturation in near-vertical fractures. The saturation of gas hydrate is also estimated using the modified Biot-Gassmann theory (BGTL) by Lee and Collett (2006). The saturation values estimated rom BGTL are much lower than those calculated from Archie’s equation. Based on log data, the hydrate-bearing sediment section is approximately 70 m (UBGH1-9) to 130 m (UBGH1-10) in thickness at these two sites. This was further directly confirmed by the recovery of gas hydrate samples and pore water freshening collected from deep drilling core during the expedition. LWD data also strongly support the interpretation of the seismic gas hydrate indicators (e.g., vent or chimney structures and bottom-simulating reflectors), which imply the probability of widespread gas hydrate presence in the Ulleung Basin.  相似文献   

4.
Gas hydrate was discovered in the Krishna–Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500 m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ∼2.5 km2 defined using seismic attributes of the seafloor reflection, as well as “seismic sweetness” at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ˜6 km NW of Site NGHP-01-10.  相似文献   

5.
Fractures and borehole breakouts from image data acquired from Logging-While-Drilling (LWD) were identified and analyzed using GMI Imager software. Conductive (e.g., dark-colored images) and resistive fractures (e.g., light-colored images) were identified on the images. Breakouts occurring along the borehole wall in the direction of the minimum horizontal stress were also investigated. For fracture analysis, we investigated dip and direction of fractures on the resistivity images acquired from two sites in the Ulleung Basin, East Sea. Dip angles at two sites are 42° and 62.5° on average, respectively. Dip direction shows preferred orientation northerly. From fracture analysis, the maximum horizontal stress direction may be the NW-SE direction. This pattern likely reflects regional stress regime of this area. We also analyzed borehole breakouts on the LWD image data (borehole radius and density data) acquired from Site U1378, IODP Exp. 334 off Costa Rica. We estimated present-day in situ stress orientation from borehole breakouts. Breakout orientation of slope sediments at Site U1378 indicates that maximum horizontal principal stress direction is oriented northwest-southeast. This direction is probably related to plate motion in this area. This study presents preliminary results in order to interpret not only stress history of the Ulleung Basin but also in situ stress state of continental slope off Costa Rica in near future.  相似文献   

6.
An analysis of 3D seismic data from the northwestern part of the Ulleung Basin, East Sea, revealed that the gas hydrate stability zone (GHSZ) consists of five seismic units separated by regional reflectors. An anticline is present that documents activity of many faults. The seismic indicators of gas hydrate occurrence included bottom simulating reflector (BSR) and acoustic blanking in the gas hydrate occurrence zone (GHOZ). By the analysis of the seismic characteristics and the gradient of the sedimentary strata, the GHOZ was divided into four classes: (1) dipping strata upon strong BSR, (2) dipping strata below strong BSR, (3) parallel strata with acoustic blanking, and (4) parallel strata below weak BSR. Seismic attributes such as reflection strength and instantaneous frequency were computed along the GHOZ. Low reflection strength and high instantaneous frequency were identified above the BSR, indicating the occurrence of gas hydrate. A remarkably high reflection strength and low instantaneous frequency indicated the presence of free gas below the BSR. Considering the distribution of the gas hydrate and free gas, two gas migration processes are suggested: (1) stratigraphic migration through the dipping, permeable strata and (2) structural migration from below the GHSZ along faults.  相似文献   

7.
A wide-spread bottom simulating reflector (BSR), interpreted to mark the thermally controlled base of the gas hydrate stability zone, is observed over a close grid of multichannel seismic profiles in the Krishna Godavari Basin of the eastern continental margin of India. The seismic data reveal that gas hydrate occurs in the Krishna Godavari Basin at places where water depths exceed 850 m. The thickness of the gas hydrate stability zone inferred from the BSR ranges up to 250 m. A conductive model was used to determine geothermal gradients and heat flow. Ground truth for the assessment and constraints on the model were provided by downhole measurements obtained during the National Gas Hydrate Program Expedition 01 of India at various sites in the Krishna Godavari Basin. Measured downhole temperature gradients and seafloor-temperatures, sediment thermal conductivities, and seismic velocity are utilized to generate regression functions for these parameters as function of overall water depth. In the first approach the base of gas hydrate stability is predicted from seafloor bathymetry using these regression functions and heat flow and geothermal gradient are calculated. In a second approach the observed BSR depth from the seismic profiles (measured in two-way travel time) is converted into heat flow and geothermal gradient using the same ground-truth data. The geothermal gradient estimated from the BSR varies from 27 to 67°C/km. Corresponding heat flow values range from 24 to 60 mW/m2. The geothermal modeling shows a close match of the predicted base of the gas hydrate stability zone with the observed BSR depths.  相似文献   

8.
The bottom simulating reflector (BSR), the boundary between the gas hydrate and the free gas zone, is considered to be the most common evidence in seismic data analysis for gas hydrate exploration. Multiple seismic attribute analyses of reflectivity and acoustic impedance from the post-stack deconvolution and complex analysis of instantaneous attribute properties including the amplitude envelope, instantaneous frequency, phase, and first derivative of the amplitude of seismic data have been used to effectively confirm the existence of a BSR as the base of gas hydrate stability zone. In this paper, we consider individual seismic attribute analysis and integrate the results of those attributes to locate the position of the BSR. The outputs from conventional seismic data processing of the gas hydrate data set in the Ulleung Basin were used as inputs for multiple analyses. Applying multiple attribute analyses to the individual seismic traces showed that the identical anomalies found in two-way travel time (TWT) between 3.1 and 3.2 s from the results of complex analyses and l 1 norm deconvolution indicated the location of the BSR.  相似文献   

9.
The presence of gas hydrate in the Ulleung Basin, East Sea (Japan Sea), inferred by various seismic indicators, including the widespread bottom-simulating reflector (BSR), has been confirmed by coring and drilling. We applied the standard AVO technique to the BSRs in turbidite/hemipelagic sediments crosscutting the dipping beds and those in debris-flow deposits to qualitatively assess the gas hydrate and gas concentrations. These BSRs are not likely to be affected by thin-bed tuning which can significantly alter the AVO response of the BSR. The BSRs crosscutting the dipping beds in turbidite/hemipelagic sediments are of low-seismic amplitude and characterized by a small positive gradient, indicating a decrease in Poisson’s ratio in the gas-hydrate stability zone (GHSZ), which, in turn, suggests the presence of gas hydrate. The BSRs in debris-flow deposits are characterized by a negative gradient, indicating decreased Poisson’s ratio below the GHSZ, which is likely due to a few percent or greater gas saturations. The increase in the steepness of the AVO gradient and the magnitude of the intercept of the BSRs in debris-flow deposits with increasing seismic amplitude of the BSRs is probably due to an increase in gas saturations, as predicted by AVO model studies based on rock physics. The reflection strength of the BSRs in debris-flow deposits, therefore, can be a qualitative measure of gas saturations below the GHSZ.  相似文献   

10.
《Marine and Petroleum Geology》2012,29(10):1953-1966
The presence of gas hydrate in the Ulleung Basin, East Sea (Japan Sea), inferred by various seismic indicators, including the widespread bottom-simulating reflector (BSR), has been confirmed by coring and drilling. We applied the standard AVO technique to the BSRs in turbidite/hemipelagic sediments crosscutting the dipping beds and those in debris-flow deposits to qualitatively assess the gas hydrate and gas concentrations. These BSRs are not likely to be affected by thin-bed tuning which can significantly alter the AVO response of the BSR. The BSRs crosscutting the dipping beds in turbidite/hemipelagic sediments are of low-seismic amplitude and characterized by a small positive gradient, indicating a decrease in Poisson’s ratio in the gas-hydrate stability zone (GHSZ), which, in turn, suggests the presence of gas hydrate. The BSRs in debris-flow deposits are characterized by a negative gradient, indicating decreased Poisson’s ratio below the GHSZ, which is likely due to a few percent or greater gas saturations. The increase in the steepness of the AVO gradient and the magnitude of the intercept of the BSRs in debris-flow deposits with increasing seismic amplitude of the BSRs is probably due to an increase in gas saturations, as predicted by AVO model studies based on rock physics. The reflection strength of the BSRs in debris-flow deposits, therefore, can be a qualitative measure of gas saturations below the GHSZ.  相似文献   

11.
裂隙是油气藏和天然气水合物成藏成矿的有利疏导体系, 但是受地震分辨率的影响, 微裂隙不易用常规手段识别。为研发一套实用的裂隙识别技术, 文章分析了裂隙的地震波运动学和动力学特征, 结合相关技术功能原理, 融合三维可视化技术、相干技术等方法, 在莺歌海盆地的底辟构造中成功刻画出裂隙通道, 并据此技术发现大气田。经实践及分析, 该技术亦可应用于琼东南盆地天然气水合物的疏导体系研究, 是一套行之有效的裂隙识别技术。  相似文献   

12.
To confirm the seabed fluid flow at the Haima cold seeps, an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of the active seepage area. The shapes of bubble plumes are not constant and influenced by the northeastward bottom currents, but the water depth where these bubble plumes disappear (630–650 m below the sea level) (mbsl) is very close to the upper limit of the gas hydrate stability zone in the water column (620 m below the sea level), as calculated from the CTD data within the study area, supporting the “hydrate skin” hypothesis. Gas chimneys directly below the bottom simulating reflectors, found at most sites, are speculated as essential pathways for both thermogenic gas and biogenic gas migrating from deep formations to the gas hydrate stability zone. The fracture network on the top of the basement uplift may be heavily gas-charged, which accounts for the chimney with several kilometers in diameter (beneath Plumes B and C). The much smaller gas chimney (beneath Plume D) may stem from gas saturated localized strong permeability zone. High-resolution seismic profiles reveal pipe-like structures, characterized by stacked localized amplitude anomalies, just beneath all the plumes, which act as the fluid conduits conveying gas from the gas hydrate-bearing sediments to the seafloor, feeding the gas plumes. The differences between these pipe-like structures indicate the dynamic process of gas seepage, which may be controlled by the build-up and dissipation of pore pressure. The 3D seismic data show high saturated gas hydrates with high RMS amplitude tend to cluster on the periphery of the gas chimney. Understanding the fluid migration and hydrate accumulation pattern of the Haima cold seeps can aid in the further exploration and study on the dynamic gas hydrate system in the South China Sea.  相似文献   

13.
Seismic coherency measures, such as similarity and dip of maximum similarity, were used to characterize mass transport deposits (MTDs) in the Ulleung Basin, East Sea, offshore Korea. Using 2-D and 3-D seismic data several slope failure masses have been identified near drill site UBGH1-4. The MTDs have a distinct seismic character and exhibit physical properties similar to gas hydrate bearing sediment: elevated electrical resistivity and P-wave velocity. Sediments recovered from within the MTDs show a reworked nature with chaotic assemblage of mud-clasts. Additionally, the reflection at the base of MTDs is polarity reversed relative to the seafloor, similarly to the bottom-simulating reflector commonly used to infer the presence of gas hydrates. The MTDs further show regional seismic blanking (absence of internal reflectivity), which is yet another signature often attributed to gas hydrate bearing sediments. At the drill site UBGH1-4, no gas hydrate was recovered in sediment-cores from inside a prominent MTD unit. Instead, pore-filling gas hydrate was recovered only within thin turbidite sand layers near the base of the gas hydrate stability zone. With the analysis of seismic attributes, the seismic character of the prominent MTD (Unit 3) was investigated. The base of the MTD unit exhibits deep grooves interpreted as gliding tracks from either outrunner blocks or large clasts that were dragged along the paleo-seafloor. Similar seismic features were identified on the seafloor although the length of the gliding tracks on the seafloor is much shorter (a few hundred meters to ∼1 km), compared to over 10 km long tracks at the base of the MTD. The seismic coherency attributes allowed to estimate the volume of the failed sediment as well as the direction of the flow of sediment. Tracking the MTD and extrapolating its spatial extent from the 3-D seismic volume to adjacent 2-D seismic profiles, a possible source region of this mass failure was defined ∼50 km upslope of Site UBGH1-4.  相似文献   

14.
Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.  相似文献   

15.
The Hikurangi Margin, east of the North Island of New Zealand, is known to contain significant deposits of gas hydrates. This has been demonstrated by several multidisciplinary studies in the area since 2005. These studies indicate that hydrates in the region are primarily located beneath thrust ridges that enable focused fluid flow, and that the hydrates are associated with free gas. In 2009–2010, a seismic dataset consisting of 2766 km of 2D seismic data was collected in the undrilled Pegasus Basin, which has been accumulating sediments since the early Cretaceous. Bottom-simulating reflections (BSRs) are abundant in the data, and they are accompanied by other features that indicate the presence of free gas and concentrated accumulations of gas hydrate. We present results from a detailed qualitative analysis of the data that has made use of automated high-density velocity analysis to highlight features related to the hydrate system in the Pegasus Basin. Two scenarios are presented that constitute contrasting mechanisms for gas-charged fluids to breach the base of the gas hydrate stability zone. The first mechanism is the vertical migration of fluids across layers, where flow pathways do not appear to be influenced by stratigraphic layers or geological structures. The second mechanism is non-vertical fluid migration that follows specific strata that crosscut the BSR. One of the most intriguing features observed is a presumed gas chimney within the regional gas hydrate stability zone that is surrounded by a triangular (in 2D) region of low reflectivity, approximately 8 km wide, interpreted to be the result of acoustic blanking. This chimney structure is cored by a ∼200-m-wide low-velocity zone (interpreted to contain free gas) flanked by high-velocity bands that are 200–400 m wide (interpreted to contain concentrated hydrate deposits).  相似文献   

16.
Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea   总被引:1,自引:0,他引:1  
Geophysical surveys and geological studies of gas hydrates in the western deep-water Ulleung Basin of the East Sea off the east coast of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. The work included a grid of 4782 km of 2D multi-channel seismic reflection lines and 11 piston cores 5–8 m long. In the piston cores, cracks generally parallel to bedding suggest significant in-situ gas. The cores showed high amounts of total organic carbon (TOC), and from the southern study area showed high residual hydrocarbon gas concentrations. The lack of higher hydrocarbons and the carbon isotope ratios indicate that the methane is primarily biogenic. The seismic data show areas of bottom-simulating reflectors (BSRs) that are associated with gas hydrates and underlying free gas. An important observation is the numerous seismic blanking zones up to 2 km across that probably reflect widespread fluid and gas venting and that are inferred to contain substantial gas hydrate. Some of the important results are: (1) BSRs are widespread, although most have low amplitudes; (2) increased P-wave velocities above some BSRs suggest distributed low to moderate concentration gas hydrate whereas a velocity decrease below the BSR suggests free gas; (3) the blanking zones are often associated with upbowing of sedimentary bedding reflectors in time sections that has been interpreted at least in part due to velocity pull-up produced by high-velocity gas hydrate. High gas hydrate concentrations are also inferred in several examples where high interval velocities are resolved within the blanking zones. Recently, gas hydrate recoveries by the piston coring and deep-drilling in 2007 support the interpretation of substantial gas hydrate in many of these structures.  相似文献   

17.
为解决甲烷渗漏系统末端裂隙系统空间分布规律问题,基于南海北部深水区高分辨率三维地震数据,采用可视化与相干体技术描述似海底反射层分布区裂隙空间结构与分布特征,阐述了裂隙产生的地质成因类型,讨论了裂隙与其他类型输导体系对甲烷气成藏的关系。似海底反射层界面上部空间裂隙远少于下部空间的地质结构体,使水合物成藏过程中甲烷气供大于散,对研究水合物成藏和检测甲烷气的渗漏有普遍指示作用。根据裂隙的发育规模,研究区大致可以识别出短裂隙、长裂隙、裂隙束、裂隙群(组) 4种类型,它们对流体的渗漏能力依次增强,这些裂隙在地层中往往以多类型共存的方式,或与其他地质构造共同构成渗漏系统。这些结果和认识对完善深水盆地甲烷气渗漏系统水合物成藏模式及成藏机理有广泛意义。  相似文献   

18.
Gas hydrate saturation estimates were obtained from an Archie-analysis of the Logging-While-Drilling (LWD) electrical resistivity logs under consideration of the regional geological framework of sediment deposition in the Ulleung Basin, East Sea, of Korea. Porosity was determined from the LWD bulk density log and core-derived values of grain density. In situ measurements of pore-fluid salinity as well as formation temperature define a background trend for pore-fluid resistivity at each drill site. The LWD data were used to define sets of empirical Archie-constants for different depth-intervals of the logged borehole at all sites drilled during the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2). A clustering of data with distinctly different trend-lines is evident in the cross-plot of porosity and formation factor for all sites drilled during UBGH2. The reason for the clustering is related to the difference between hemipelagic sediments (mostly covering the top ∼100 mbsf) and mass-transport deposits (MTD) and/or the occurrence of biogenic opal. For sites located in the north-eastern portion of the Ulleung Basin a set of individual Archie-parameters for a shallow depth interval (hemipelagic) and a deeper MTD zone was achieved. The deeper zone shows typically higher resistivities for the same range of porosities seen in the upper zone, reflecting a shift in sediment properties. The presence of large amounts of biogenic opal (up to and often over 50% as defined by XRD data) was especially observed at Sites UBGH2-2_1 and UBGH2-2_2 (as well as UBGH1-9 from a previous drilling expedition in 2007). The boundary between these two zones can also easily be identified in gamma-ray logs, which also show unusually low readings in the opal-rich interval. Only by incorporating different Archie-parameters for the different zones a reasonable estimate of gas hydrate saturation was achieved that also matches results from other techniques such as pore-fluid freshening, velocity-based calculations, and pressure-core degassing experiments. Seismically, individual boundaries between zones were determined using a grid of regional 2D seismic data. Zoning from the Archie-analysis for sites in the south-western portion of the Ulleung Basin was also observed, but at these sites it is linked to individually stacked MTDs only and does not reflect a mineralogical occurrence of biogenic opal or hemipelagic sedimentation. The individual MTD events represent differently compacted material often associated with a strong decrease in porosity (and increase in density), warranting a separate set of empirical Archie-parameters.  相似文献   

19.
Approximately 12,000 km2 of acoustic backscatter imagery (sidescan) data and swath bathymetry data were collected jointly by Republic of Korea (ROK) Navy, the Naval Oceanographic Office (NAVOCEANO), Hawaii Mapping Research Group (HMRG) and the Naval Research Laboratory (NRL) in the East Sea (Sea of Japan) in 1995. Preliminary analysis of these data have revealed a large network of canyons with well-developed fan deposits and slumps which were not previously mapped. Also identified is a 1400 km2 area occupied by more than 300 circular, low-backscatter features ca. 50–1000 m in diameter which are interpreted to be pockmarks or mounds created by escaping methane gas, methane-rich porewater and mud.Indirect evidence for the probable existence of methane gas hydrate include the five following observations: (1) Core samples in the region contain high levels of organic carbon (>7%), degassing cracks caused by gas expansion, and emit a strong H2S odor. (2) Extensive canyon formation and slumping may have occurred as the result of the destabilization of sediments due to gas accumulation. (3) Several of the high backscatter objects occur at the crest of a bathymetric high under which gas could be accumulating and periodically releasing in a manner similar to that documented on the Vestnesa Ridge in the Norwegian-Greenland Sea. (4) Pockmark-like features have been identified in 3.5 kHz records on the northern edge of the Ulleung Basin. (5) Drill core samples from the morphologically similar Yamato Basin, which is adjacent to the Ulleung Basin, have positively identified methane and numerous gas voids in unconsolidated sediments. No bottom simulating reflector (BSR) has been identified in seismic reflection profiles collected across the slope in Ulleung Basin.  相似文献   

20.
Multichannel seismic reflection data recorded between Arauco Gulf (37°S) and Valdivia (40°S), on the Chilean continental margin, were processed and modeled to obtain seismic images and sub-surface models, in order to characterize the variability of the bottom-simulating reflector (BSR), which is a geophysical marker for the presence of gas hydrates. The BSR is discontinuous and interrupted by submarine valleys, canyons, as well as by faults or fractures. The BSR occurrence is more common south of Mocha Island due to moderate slopes and greater organic matter contribution by rivers in that area. Tectonic uplift and structural instability change the stability gas hydrate zone and consequently the BSR position, creating in some cases missing or double BSRs. Our modeling supports the presence of gas hydrate above the BSR and free gas below it. Higher BSR amplitudes support higher hydrate or free gas concentrations. In the study area, gas hydrate concentration is low (an average of 3.5%) suggesting disseminated gas hydrate distribution within the sediments. Also higher BSR amplitudes are associated with thrust faults in the accretionary prism, which serve as conduits for gas flow from deeper levels. This extra gas supply produces a wider thickness of gas hydrates or free gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号