首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of the intense brightness of the OB‐type multiple star system σ Ori, the low‐mass stellar and substellar populations close to the centre of the very young σ Orionis cluster is poorly know. I present an IJHKs survey in the cluster centre, able to detect from the massive early‐type stars down to cluster members below the deuterium burning mass limit. The near‐infrared and optical data have been complemented with X‐ray imaging. Ten objects have been found for the first time to display high‐energy emission. Previously known stars with clear spectroscopic youth indicators and/or X‐ray emission define a clear sequence in the I vs. IKs diagram. I have found six new candidate cluster members that follow this sequence. One of them, in the magnitude interval of the brown dwarfs in the cluster, displays X‐ray emission and a very red JKs colour, indicative of a disc. Other three low‐mass stars have excesses in the Ks band as well. The frequency of X‐ray emitters in the area is 80±20 %. The spatial density of stars is very high, of up to 1.6±0.1 arcmin–2. There is no indication of lower abundance of substellar objects in the cluster centre. Finally, I also report two cluster stars with X‐ray emission located at only 8000–11000 AU to σ Ori AB, two sources with peculiar colours and an object with X‐ray emission and near‐infrared magnitudes similar to those of previously‐known substellar objects in the cluster. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present an RI photometric survey covering an area of 430 arcmin2 around the multiple star σ Orionis. The observations were conducted with the 0.8 m IAC‐80 Telescope at the Teide Observatory. The survey limiting R and I magnitudes are 22.5 and 21, and completeness magnitudes 21 and 20, respectively. We have selected 53 candidates from the I vs. RI colour‐magnitude diagram (I = 14–20) that follow the previously known photometric sequence of the cluster. Adopting an age of 2–4 Myr for the cluster, we find that these objects span a mass range from 0.35 M to 0.015 M. We have performed J‐band photometry of 52 candidates and Ks photometry for 12 of them, with the result that 50 follow the expected infrared sequence for the cluster, thus confirming with great confidence that the majority of the candidates are bona fide members. JHKs photometry from the Two Micron All Sky Survey (2MASS) is available for 50 of the candidates and are in good agreement with our data. Out of 48 candidates, which have photometric accuracies better than 0.1 mag in all bands, only three appear to show near‐infrared excesses. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have performed deep, wide‐field imaging on a ∼0.4 deg2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R ∼ 22 mag and I ∼ 20 mag, sufficient to detect brown dwarf candidates down to 40 MJ. We found 197 objects, whose location in the (I, RI) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co‐add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two‐dimensional χ2 fitting (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The detection of near‐infrared (NIR) excess at the position of a star can indicate either a substellar companion or a disk around the respective star. In this work we probed whether a 2.5σ H ‐band flux enhancement at the position of the isolated neutron star RX J0806.4–4123 can be confirmed at another NIR wavelength. We observed RXJ0806.4–4123 in the J ‐band with Gemini South equipped with FLAMINGOS‐2. There was no significant detection of a J ‐band source at the neutron star position. However, similarly to the H ‐band we found a very faint (1.4σ) flux enhancement with a nominal magnitude of J = 24.8 ± 0.5. The overall NIR‐detection significance is 3.1σ. If real, this emission is too bright to come from the neutron star alone. Deeper near‐infrared observations are necessary to confirm or refute the potential NIR excess. The confirmation of such NIR excess could imply that there is a substellar companion or a disk around RXJ0806.4–4123. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present the first deep, optical, wide‐field imaging survey of the young open cluster Collinder 359, complemented by near‐infrared follow‐up observations. This study is part of a large programme aimed at examining the dependence of the mass function on environment and time. We have surveyed 1.6 square degree in the cluster in the I and z filters with the CFH12K camera on the Canada‐France‐Hawaii 3.6m telescope down to completeness and detection limits in both filters of 22.0m and 24.0m, respectively. Based on their location in the optical (I‐z ,I ) colour‐magnitude diagram, we have extracted new cluster member candidates in Collinder 359 spanning 1.3‐0.04 M, assuming an age of 100 Myr and a distance of 450 pc for the cluster.We have used the 2MASS database as well as our own near‐infrared photometry to confirm the membership of the optically‐selected cluster candidates. Additionally, we have obtained optical spectroscopy and employed chromospheric activity as a further criterion to assess the membership of candidates. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We study the spatial structure and sub‐structure of regions rich in Hipparcos stars with blue BTVT colours. These regions, which comprise large stellar complexes, OB associations, and young open clusters, are tracers of on‐going star formation in the Galaxy. The DBSCAN (Density‐Based Spatial Clustering of Applications with Noise) data clustering algorithm is used to look for spatial overdensities of early‐type stars. Once an overdensity, “agglomerate”, is identified, we carry out a data and bibliographic compilation of their star member candidates. The actual membership in agglomerate of each early‐type star is studied based on its heliocentric distance, proper motion, and previous spectro‐photometric information. We identify 35 agglomerates of early‐type Hipparcos stars. Most of them are associated to previously known clusters and OB associations. The previously unknown P Puppis agglomerate is subject of a dedicated study with Virtual Observatory tools. It is actually a new, nearby, young open cluster (d ∼ 470 pc, age ∼ 20 Ma) with a clear radial density gradient.We list P Puppis and other six agglomerates (including NGC 2451 A, vdBH 23, and Trumpler 10) as new sites for substellar searches because of their youth, closeness, and spatial density. We investigate in detail the sub‐structure in the Orion, CMa‐Pup and Pup‐Vel OB complexes (“super‐agglomerates”). We confirm or discover some stellar overdensities in the Orion complex, like the 25 Ori group, the Horsehead region (including the σ Orionis cluster), and the η Orionis agglomerate. Finally, we derive accurate parallactic distances to the Pleiades, NGC 2451 A, and IC 2391, describe several field early‐type stars at d < 200 pc, and discuss the incompleteness of our search. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
New and existing photometry for the G0 Ia supergiant HD 18391 is analyzed in order to confirm the nature of the variability previously detected in the star, which lies off the hot edge of the Cepheid instability strip. Small‐amplitude variability at a level of δV = 0.016 ± 0.002 is indicated, with a period of P = 123d.04 ± 0d.06. A weaker second signal may be present at P = 177d.84 ± 0d.18 with δV = 0.007 ± 0.002, likely corresponding to fundamental mode pulsation if the primary signal represents overtone pulsation (123.04/177.84 = 0.69). The star, with a spectroscopic reddening of EB–V = 1.02 ± 0.003, is associated with heavily‐reddened B‐type stars in its immediate vicinity that appear to be outlying members of an anonymous young cluster centered ∼10′ to the west and 1661 ± 73 pc distant. The cluster has nuclear and coronal radii of rn = 3.5′ and Rc = 14′, respectively, while the parameters for HD 18391 derived from membership in the cluster with its outlying B stars are consistent with those implied by its Cepheid‐like pulsation, provided that it follows the semi‐period‐luminosity relation expected of such objects. Its inferred luminosity as a cluster member is MV = –7.76 ± 0.10, its age (9 ± 1) × 106 years, and its evolutionary mass ∼19 M. HD 18391 is not a classical Cepheid, yet it follows the Cepheid period‐luminosity relation closely, much like another Cepheid impostor, V810 Cen (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present a new flare star, which was discovered during our survey on a selected field at the edge of the Pleiades cluster. The field was observed in the period 2007–2010 with three different CCD‐cameras at the University Observatory Jena with telescopes from 25 to 90 cm. The flare duration is almost one hour with an amplitude in the R‐band of about 1.08 mag. The location of the flare star in a color‐magnitude diagram is consistent with age and distance of the Pleiades. In the optical PSF of the flare star there are two 2MASS objects (unresolved in most images in the optical Jena PSF), so it is not yet known which one of them is responsible for this flare. The BVRIJHK colors yield spectral types of M1 and M2 with extinction being Av = 0.231 ± 0.024 mag and Av = 0.266 ± 0.020 for those two stars, consistent with the Pleiades cluster (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ΔM. The actual value of ΔM or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ΔM in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10–11 M/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Evolutionary and atmospheric models have become available for young ultralow‐mass objects. These models are being used to determine fundamental parameters from observational properties. TiO bands are used to determine effective temperatures in ultralow‐mass objects, and together with Na‐ and K‐lines to derive gravities at the substellar boundary. Unfortunately, model calibrations in (young) ultralow‐mass objects are rare. As a first step towards a calibration of synthetic spectral features, I show molecular bands of TiO, which is a main opacity source in late M‐dwarfs. The TiO ε ‐band at 8450 Å is systematically too weak. This implies that temperatures determined from that band are underestimated, and I discuss implications for determining fundamental parameters from high resolution spectra. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We observed a cluster of extremely bright penumbral grains located at the inner limb‐side penumbra of the leading sunspot in active region NOAA 10892. The penumbral grains in the cluster showed a typical peak intensity of 1.58 times the intensity I0 of the granulation surrounding the sunspot. The brightest specimen even reached values of 1.8–2.0 I0, thus, exceeding the temperatures of the brightest granules in the immediate surroundings of the sunspot. We find that the observed sample of extremely bright penumbral grains is an intermittent phenomenon, that disappears on time scales of hours. Horizontal flow maps indicating proper motions reveal that the cluster leaves a distinct imprint on the penumbral flow field. We find that the divergence line co‐located with the cluster is displaced from the middle penumbra closer towards the umbra and that the radial outflow velocities are significantly increased to speeds in excess of 2 km s–1. The extremely bright penumbral grains, which are located at the inner limb‐side penumbra, are also discernible in offband Hα images down to Hα ± 0.045 nm. We interpret the observations in the context of the moving flux tube model arguing that hotter than normal material is rapidly ascending along the inner footpoint of the embedded flux tube, i.e., the ascending hot material is the cause of the extremely bright penumbral grains. This study is based on speckle‐reconstructed broad‐band images taken at 600 nm and chromospheric Hα observations obtained with two‐dimensional spectroscopy. All data were taken with adaptive optics under very good seeing conditions at the Dunn Solar Telescope, National Solar Observatory/Sacramento Peak, New Mexico on 2006 June 10. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The interior structure of Jupiter serves as a benchmark for an entire astrophysical class of liquid–metallic hydrogen-rich objects with masses ranging from ~0.1M J to ~80M J (1M J = Jupiter mass = 1.9e30 g), comprising hydrogen-rich giant planets (mass < 13M J) and brown dwarfs (mass > 13M J but ~ < 80M J), the so-called substellar objects (SSOs). Formation of giant planets may involve nucleated collapse of nebular gas onto a solid, dense core of mass ~0.04M J rather than a stellar-like gravitational instability. Thus, detection of a primordial core in Jupiter is a prime objective for understanding the mode of origin of extrasolar giant planets and other SSOs. A basic method for core detection makes use of direct modeling of Jupiter’s external gravitational potential terms in response to rotational and tidal perturbations, and is highly sensitive to the thermodynamics of hydrogen at multi-megabar pressures. The present-day core masses of Jupiter and Saturn may be larger than their primordial core masses due to sedimentation of elements heavier than hydrogen. We show that there is a significant contribution of such sedimented mass to Saturn’s core mass. The sedimentation contribution to Jupiter’s core mass will be smaller and could be zero.  相似文献   

14.
We report simultaneous multicolour observations in 5 bands (UBVRI) of the flickering variability of the cataclysmic variable AE Aqr. Our aim is to estimate the parameters (colours, temperature, size) of the fireballs that produce the optical flares. The observed rise times of the optical flares are in the interval 220‐440 s. We estimate the dereddened colours of the fireballs as (UB)0∼0.8‐1.4, (BV)0∼0.03‐0.24, and (VI)0∼0.26‐0.78. We find for the fireballs temperatures of 10000‐25000 K, masses of (7‐90)x1019 g, and sizes of (3‐7)x109 cm (using a distance of d = 86 pc). These values refer to the peak of the flares observed in the UBVRI bands. The data are available upon request from the authors (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Results from kinematic solar dynamo models employing α ‐effect and turbulent pumping from local convection calculations are presented. We estimate the magnitude of these effects to be around 2–3 m s–1, having scaled the local quantities with the convective velocity at the bottom of the convection zone from a solar mixing‐length model. Rotation profile of the Sun as obtained from helioseismology is applied in the models; we also investigate the effects of the observed surface shear layer on the dynamo solutions. With these choices of the small‐ and large‐scale velocity fields, we obtain estimate of the ratio of the two induction effects, C α /C Ω ≈ 10–3, which we keep fixed in all models. We also include a one‐cell meridional circulation pattern having a magnitude of 10–20 m s–1 near the surface and 1–2 m s–1 at the bottom of the convection zone. The model essentially represents a distributed turbulent dynamo, as the α ‐effect is nonzero throughout the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30° of latitude. Turbulent pumping of the mean fields is predominantly down‐ and equatorward. The anisotropies in the turbulent diffusivity are neglected apart from the fact that the diffusivity is significantly reduced in the overshoot region. We find that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed negative sign of B r B ϕ . Although the activity clearly shifts towards the equator in comparison to previous models due to the combined action of the α ‐effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of the activity still occurs at too high latitudes (between 5° … 60°). Other problems include the relatively narrow parameter space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar‐type solutions. The role of the surface shear layer is found to be important only in the case where the α ‐effect has an appreciable magnitude near the surface. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present relative astrometry and differential photometry measurements for a sample of nearby southern orbital binaries making use of the technique of Adaptive Optics. The observations were made in December 2000, with the ADONIS camera mounted at the 3.6‐m ESO telescope from La Silla Observatory, equipped with the broad‐band near‐infrared filters (J ‐, H ‐, K ‐passbands). Our sample contains stars which do not fit very well the empirical mean mass‐luminosity relation (according to our previous study), but for which accurate parallaxes (determined by the Hipparcos satellite) and high‐quality orbits were available thanks to many previous efforts. We derived accurate positions and J, H, K magnitudes of the individual components of those binaries. The individual stellar components have near‐infrared colour indices well grouped in those plots and are comparable to standard single stars. The data reduction procedure used for deriving those results is described in detail. It is based on a least‐squares fit of Moffat‐Lorentz profiles in direct imaging for well‐resolved systems and on Fourier analysis for very close pairs. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We look for high‐amplitude variable young stars in the open clusters and associations of the Orion Belt. We use public data from the ASAS‐3 Photometric V ‐band Catalogue of the All Sky Automated Survey, infrared photometry from the 2MASS and IRAS catalogues, proper motions, and the Aladin sky atlas to obtain a list of the most variable stars in a survey area of side 5° centred on the bright star Alnilam (ε Ori) in the centre of the Orion Belt. We identify 32 highly variable stars, of which 16 had not been reported to vary before. They are mostly variable young stars and candidates (16) and background giants (8), but there are also field cataclysmic variables, contact binaries, and eclipsing binary candidates. Of the young stars, which typically are active Herbig Ae/Be and T Tauri stars with Hα emission and infrared flux excess, we discover four new variables and confirm the variability status of another two. Some of them belong to the well known σ Orionis cluster. Besides, six of the eight giants are new variables, and three are new periodic variables (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Recent observations of nearby star forming regions have offered evidence that young brown dwarfs undergo a period of mass accretion analogous to the T Tauri phase observed in young stars. Brown dwarf analogs to stellar protostars, however, have yet to be definitively observed. These young, accreting objects would shed light on the nature of the dominant brown dwarf formation process, as well as provide ideal laboratories to investigate the dependence of the accretion mechanism on protostellar mass. Recent near infrared surveys have identified candidate proto‐brown dwarfs and characterized low mass protostars in nearby star forming regions. These techniques allow near infrared spectra to diagnose the effective temperature, accretion luminosity, magnetic field strength and rotation velocity of young low mass stars across the stellar/substellar boundary. The lowest mass proto‐brown dwarfs (M < 40 MJup), however, will prove challenging to observe given current near IR observational capabilities. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The first CCD photometric investigation of the open cluster NGC 7296 up to now was performed within the narrow band Δa photometric system, which enables us to detect peculiar objects. A deeper investigation of that cluster followed, using the standard BV R ‐Bessel filter set. The age and E (BV ) was determined independently to log t = 8.0 ± 0.1 and 0.15 ± 0.02, respectively by using Δa and broadband photometry. In total five Be/Ae objects and two metal‐weak stars showing significant negative Δa ‐values as well as one classical chemically peculiar star could be identified within that intermediate age open cluster. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The Serpens cloud core is populated by a young, low‐mass stellar cluster with members in many different evolutionary stages. We revisit the near‐IR properties of the cluster in this contribution. A total of 188 near‐IR sources are identified, including new members suggested in this work. Near‐IR colour‐magnitude and colour‐colour diagrams allow us to suggest 42 objects among the cluster members as brown dwarf candidates. A considerable fraction of them present near‐IR excesses which indicates that many of these very low mass objects are still surrounded by prominent dust accretion disks. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号