首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The ampeliscid amphipod community in the Chirikov Basin of the northern Bering Sea was a focus of study during the 1980s because they were a major food for the Eastern North Pacific (ENP) population of gray whales Eschrichtius robustus. Information from the 1980s benthic investigations, published accounts of ENP gray whale population trends and the occurrence in 1999–2000 of an unusual number of gray whale mortalities prompted concern that the whale population may have exceeded the carrying capacity of its food base. Therefore, during two cruises per year between June and September, 2002 and 2003, we resampled the 20 stations occupied during the 1980s, to determine if there had been any significant changes in ampeliscid abundance and biomass. During 2002–2003, average ampeliscid dry weight biomass was about 28±10 g m−2 (95% confidence interval), a decline of nearly 50% from maximum values in the 1980s. Amphipod length measurements indicated that the declines were due mainly to the absence of the larger animals (20–30 mm length). Two hypotheses were considered regarding the amphipod declines: gray whale predation and climate. Ampeliscid production (105 kcal m−2 yr−1) and gray whale energy requirements (1.6×108 kcal individual−1 yr−1) indicated that as little as 3–6% of the current estimate of the ENP gray whale population could remove 10–20% of the annual ampeliscid production from the study site in 2002–2003, a finding consistent with the hypothesis that top-down control by foraging whales was the primary cause of the observed declines. A 10-yr time series of temperature near the bottom in the Bering Strait and northward transport did not reveal a consistent trend between 1990 and 2001, suggesting that climate influences were not the major cause of the observed declines. Arctic ampeliscids have slow growth rates and long generation times; therefore the ampeliscid community may require decades to recover to densities observed in the 1980s. Predicted warming trends in the northern Bering Sea could impact ampeliscid recovery by lowering primary production or altering the community composition of the benthos.  相似文献   

2.
The distribution and abundance of viable and non-viable (so-called resting eggs) embryos of the calanoid copepod Tortanus forcipatus were determined in the laboratory by the enumeration of nauplii that emerge from sediments collected in Victoria Harbor (Hong Kong). Sediment cores sliced down to a depth of 37 cm showed the highest number of viable resting eggs near the surface layer (0–5 cm). The number of viable eggs sharply decreased with sediment depth, particularly at the inner harbor stations, although diapause eggs remained viable as deep as 25 cm. 210Pb analyses of the sediments indicated that the mean egg age was 4.9 years. The egg mortality of T. forcipatus in the sediments was 0.135 year−1, or 78.22% annual egg survival, calculated by regressing ln (egg density) from sediment age. The range of horizontal distribution of viable resting eggs was 24.25 × 103–58.90 × 103 m−2, with a mean value of 36.8 × 103 m−2 over all stations. The accumulation of viable resting eggs that can persist for an extended period of time provided evidence for the existence of an egg bank of T. forcipatus in the sediments of Victoria Harbor.  相似文献   

3.
The natural diet of the epiphytic hydrozoan Obelia geniculata has been studied in an upwelling area in the Bay of Coliumo (Dichato, Chile) during two 24-h cycles. Number of prey per predator and predatory density have been measured. In both cycles more than 78% of the diet consisted of eggs of invertebrates and faecal pellets. Compared with other species of hydrozoans studied in a similar way, O. geniculata had a heterogeneous diet and a capture rate which was scarcely related to the peaks of abundance of its prey. This catch rate was between 632×103 and 10 393×103 prey m−2 day−1, which corresponds to a mean ingestion rate of 113% of the hydranth biomass per day. These results indicate the importance of small-sized benthic suspension feeders in upwelling systems.  相似文献   

4.
A video plankton recorder (VPR) and a remotely operated vehicle (ROV) were utilized on three cruises in the oligotrophic North Pacific Subtropical Gyre (NPSG) between 1995 and 2002 to quantify the size and abundance of marine snow and Rhizosolenia diatom mats within the upper 305 m of the water column. Quantitative image analysis of video collected by the VPR and an ROV-mounted particle imaging system provides the first transect of marine snow size and abundance across the central North Pacific Gyre extending from 920 km NW of Oahu to 555 km off Southern California. Snow abundance in the upper 55 m was surprisingly high for this oligotrophic region, with peak values of 6.0–13.0×103 aggregates m−3 at the western- and easternmost stations. At stations located in the middle of the transect (farthest from HI and CA), upper water column snow abundance displayed values of 0.5–1.0×103 aggregates m−3. VPR and ROV imagery also provided in situ documentation of the presence of nitrogen-transporting, vertically migrating Rhizosolenia mats from the surface to >300 m with mat abundances ranging from 0 to 10 mats m−3. There was clear evidence that Rhizosolenia mats commonly reach sub-nutricline depths. The mats were noted to be a common feature in the North Pacific Gyre, with the lower salinity edge of the California Current appearing to be the easternmost extent of their oceanic distribution. Based on ROV observations at depth, flux by large (1.5 cm) mats is revised upward 4.5-fold, yielding an average value of 40 μmol N m−2 d−1, a value equaling previous estimates that included much smaller mats visible only to towed optical systems. Our results suggest that the occurrence across a broad region of the NPSG of particulate organic matter production events represented by high concentrations of Rhizosolenia mats, associated mesozooplankton, and abundant detrital marine aggregates may represent significant stochastic components in the overall carbon, nitrogen, and silica budgets of the oligotrophic subtropical gyre. Likewise, their presence has important implications for the proposed climate-driven, ecosystem reorganization or domain shift occurring in the NPSG.  相似文献   

5.
Production of the marine calanoid copepod Acartia steueri was measured from 2 October 1991 to 8 October 1992 at a station in Ilkwang Bay, on the southeastern coast of Korea. Phytoplankton standing stock ranged over 1.0 to 9.3 mg chl.a m−3, and annual primary productivity (by the C-14 method) at three stations was estimated at 200 gC m−2 yr−1. Acartia steueri (nauplii + copepodids + adults) were present in the plankton throughout the year, with seasonal variation in abundance. Biomass of A. steueri, excluding the NI stage, was 0.01–4.55 mgC m−3 (mean: 0.68 mgC m−3) with peaks in November, February, May and July-early August, and relatively low biomass in September– January. Instantaneous growth rates of the nauplius stages were higher than the copepodid stages. Annual production of A. steueri was 25.1 mgC m−3 yr−1 (or 166 mgC m−2 yr−1), showing peaks in November, May and July–August with a small peak in February, and low production in December–April and September–October. There were no significant relationships between the daily production rate of A. steueri and temperature or chlorophyll a concentration, indicating that unknown other factors might be related to the variation of the production rate.  相似文献   

6.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

7.
Standing stocks and production rates of phytoplankton and planktonic copepods were investigated at 15 stations in the Inland Sea of Japan during four cruises in October–November 1979, January, April and June 1980. The overall mean of phytoplankton biomass was relatively constant during the study period, ranging from 2.3 mg chl.a m–3 in April to 3.6 mg chl.a m–3 in October–November. Primary production was low in January (mean: 90 mg C m–2 d–1), but higher than 375 mg C m–2 d–1 on the other occasions. Integrated annual primary production was 122 g C m–2 yr–1. In terms of carbon weight,Paracalanus parvus was the most important copepod species. The variation of the mean copepod biomass (range: 7.6 mg C m–3 in April to 20.2 mg C m–3 in June) was smaller than that of copepod production, which was estimated by the Ikeda-Motoda's physiological method. Copepod producion was low in cold seasons (0.6 and 0.9 mg C m–3 d–1 in January and April, respectively), and increased, following the elevation of primary production, to 4.9 mg C m–3 d–1 in June. Annual copepod production was 33.7 g C m–2 yr–1, of which herbivore (secondary) production was 26.4 g C m–2 yr–1 (21.7% of primary production). The ratios of pelagic planktivorous fish catch and total fish catch to the primary production were 0.82 and 1.8%, respectively, indicating very high efficiency in exploiting fishery resources in the Inland Sea of Japan.  相似文献   

8.
As part of a larger project on the deep benthos of the Gulf of Mexico, an extensive data set on benthic bacterial abundance (n>750), supplemented with cell-size and rate measurements, was acquired from 51 sites across a depth range of 212–3732 m on the northern continental slope and deep basin during the years 2000, 2001, and 2002. Bacterial abundance, determined by epifluorescence microscopy, was examined region-wide as a function of spatial and temporal variables, while subsets of the data were examined for sediment-based chemical or mineralogical correlates according to the availability of collaborative data sets. In the latter case, depth of oxygen penetration helped to explain bacterial depth profiles into the sediment, but only porewater DOC correlated significantly (inversely) with bacterial abundance (p<0.05, n=24). Other (positive) correlations were detected with TOC, C/N ratios, and % sand when the analysis was restricted to data from the easternmost stations (p<0.05, n=9–12). Region-wide, neither surface bacterial abundance (3.30–16.8×108 bacteria cm−3 in 0–1 cm and 4–5 cm strata) nor depth-integrated abundance (4.84–17.5×1013 bacteria m−2, 0–15 cm) could be explained by water depth, station location, sampling year, or vertical POC flux. In contrast, depth-integrated bacterial biomass, derived from measured cell sizes of 0.027–0.072 μm3, declined significantly with station depth (p<0.001, n=56). Steeper declines in biomass were observed for the cross-slope transects (when unusual topographic sites and abyssal stations were excluded). The importance of resource changes with depth was supported by the positive relationship observed between bacterial biomass and vertical POC flux, derived from measures of overlying productivity, a relationship that remained significant when depth was held constant (partial correlation analysis, p<0.05, df=50). Whole-sediment incubation experiments under simulated in situ conditions, using 3H-thymidine or 14C-amino acids, yielded low production rates (5–75 μg C m−2 d−1) and higher respiration rates (76–242 μg C m−2 d−1), with kinetics suggestive of resource limitation at abyssal depths. Compared to similarly examined deep regions of the open ocean, the semi-enclosed Gulf of Mexico (like the Arabian Sea) harbors in its abyssal sediments a greater biomass of bacteria per unit of vertically delivered POC, likely reflecting the greater input of laterally advected, often unreactive, material from its margins.  相似文献   

9.
The coupling of physics and biology was examined along a 160 km long transect running out from the north coast of South Georgia Island and crossing the Southern Antarctic Circumpolar Current Front (SACCF) during late December 2000. Surface and near surface potential TS properties indicated the presence of three water types: a near-shore group of stations characterised by water which became progressively warmer and fresher closer to South Georgia, an offshore grouping in which sea surface temperatures and those at the winter water level were relatively warm (1.8°C and 0.5°C, respectively), and a third in which surface and winter water temperatures were cooler and reflected the presence of the SACCF. The transect bisected the SACCF twice, revealing that it was flowing in opposite directions, north-westward closest to South Georgia and south-eastwards at its furthest point from the island. The innermost limb was a narrow intense feature located just off the shelf break in 2000–3500 m of water and in which rapid surface baroclinic velocities (up to 35 cm s−1) were encountered. Offshore in the outermost limb, shown subsequently to be a mesoscale eddy that had meandered south from the retroflected limb of the SACCF, flow was broader and slower with peak velocities around 20 cm s−1. Chlorophyll a biomass was generally low (<1 mg m−3) over much of the transect but increased dramatically in the region of the innermost limb of the SACCF, where a deepening of the surface mixed layer was coincident with a subsurface chlorophyll maximum (7.4 mg m−3) and elevated concentrations down to 100 m. The bloom was coincident with depleted nutrient concentrations, particularly silicate, nitrate and phosphate, and although ammonium concentrations were locally depleted the bloom lay within an elevated band (up to 1.5 mmol m−3) associated with the frontal jet. Increased zooplankton abundance, higher copepod body carbon mass and egg production rates all showed a strong spatial integrity with the front. The population structure of the copepods Calanoides acutus and Rhincalanus gigas at stations within the front suggested that rather than simply resulting from entrainment and concentration within the jet, increased copepod abundance was the result of development in situ. Estimates of bloom duration, based on silicate and carbon budget calculations, set the likely duration between 82 and 122 d, a figure supported by the development schedule of the two copepod species. Given this timescale, model outputs from FRAM and OCCAM indicated that particles that occurred on the north side of South Georgia in December would have been in the central-southern Scotia Sea 2–3 months earlier, probably in sea ice affected regions.  相似文献   

10.
Phytoplankton community composition, productivity and biomass characteristics of the mesohaline lower Neuse River estuary were assessed monthly from May 1988 to February 1990. An incubation method which considered water-column mixing and variable light exposure was used to determine phytoplankton primary productivity. The summer productivity peaks in this shallow estuary were stimulated by increases in irradiance and temperature. However, dissolved inorganic nitrogen loading was the major factor controlling ultimate yearly production. Dynamic, unpredictable rainfall events determined magnitudes of seasonal production pulses through nitrogen loading, and helped determine phytoplankton species composition. Dinoflagellates occasionally bloomed but were otherwise present in moderate numbers; rainfall events produced large pulses of cryptomonads, and dry seasons and subsequent higher salinity led to dominance by small centric diatoms. Daily production was strongly correlated (r = 0·82) with nitrate concentration and inversely correlated (r = −0·73) with salinity, while nitrate and salinity were inversely correlated (r = −0·71), emphasizing the importance of freshwater input as a nutrient-loading source to the lower estuary. During 1989 mean daily areal phytoplankton production was 938 mgC m−2, mean chlorophyll a was 11·8 mg m−3, and mean phytoplankton density was 1·56 × 103 cells ml−1. Estimated 1989 annual areal phytoplankton production for the lower estuary was 343 gC m−2.  相似文献   

11.
Accumulating evidence points to the importance of mesoscale eddies in supplying nutrients to surface waters in oligotrophic gyres. However, the nature of the biological response and its evolution over time has yet to be elucidated. Changes in mesozooplankton community composition due to eddy perturbation also could affect biogeochemical cycling. Over the course of two summers we sampled seven eddies in the Sargasso Sea. We focused on and followed a post-phytoplankton bloom cyclonic eddy (C1) in 2004 and a blooming mode-water anticyclonic eddy (A4) in 2005. We collected zooplankton in all eddies using a Multiple Opening and Closing Net Environmental Sampling System (MOCNESS) and quantified biomass (>0.15 mm, in five size fractions) from 0 to 700 m over nine discrete depth intervals. Zooplankton biomass (>0.5 mm) in the upper 150 m was similarly enhanced at night for the periphery of C1 and the center of A4 at 0.514 g m−2 and 0.533 g m−2, respectively, compared to outside (0.183 g m−2 outside C1 and 0.197 g m−2 outside A4). Despite minimal chlorophyll a enhancement and dominance by picoplankton in C1, zooplankton biomass increased most for the largest size class (>5 mm). Gut fluorescence for euphausiids and large copepods was also elevated on the C1 periphery. In A4, peak biomass occurred at eddy center coincident with peak primary production, but was highly variable (changing by >3-fold) over time, perhaps resulting from the dense, but patchy distribution of diatom chains in this region. Shifts in zooplankton community composition and abundance were reflected in enhancement of fecal pellet production and active transport by diel vertical migration in eddies. Inside C1 the flux of zooplankton fecal pellets at 150 m in June 2004 was 1.5-fold higher than outside the eddy, accounting for 9% of total particulate organic carbon (POC) flux. The flux of fecal pellets (mostly from copepods) increased through the summer in eddy A4, matching concurrent increases in zooplankton <2 mm in length, and accounting for up to 12% of total POC flux. Active carbon transport by vertically migrating zooplankton was 37% higher on the periphery of C1 and 74% higher at the center of A4 compared to the summer mean at the Bermuda Atlantic Time-series Study (BATS) station. Despite contrasting responses by the phytoplankton community to cyclonic and mode-water eddies, mesozooplankton biomass was similarly enhanced, possibly due to differential physical and biological aggregation mechanisms, and resulted in important zooplankton-mediated changes in mesoscale biogeochemistry.  相似文献   

12.
The Great Belt, the Øresund and the Little Belt connect the central Baltic Sea and the Kattegat. A fixed station was moored in the contraction area in the Little Belt during the period 18–28 July 1995, measuring temperature, salinity and current in two levels, while discharge was measured by the RVDana. The composite Froude number calculated at the fixed station shows that the two layer flow through this area was most often supercritical. The discharges were satisfactorily related to the currents measured at the fixed station, and time-series of transports through the Little Belt were established. When compared to the transports through the Øresund the water transport ratio (Øresund:Little Belt) was found to be 4·4, while the salt transport ratio was found to be 3·0. The resistance of the Little Belt, when considering the differences in sea level from Gedser to Hornbæk, was 1839×10−12 s2 m−5. On the basis of water level and surface salinity measurements made during the period 1931–76, a net discharge of 2300 m3 s−1and a net salt transport of 36 tonnes s−1through the Little Belt from the central Baltic Sea were found.  相似文献   

13.
Benthic, viable resting eggs of calanoid copepods were found for the first time in the Seine estuary (France) during July 2008. Vertical distribution of the resting eggs in the sediment was determined up to 10 cm depth. Hatching success of the eggs extracted from different 1-cm thick sediment layers was experimentally tested immediately after extraction and after a long refractory phase (i.e. 11 months) of storage at low temperature (4–5 °C). The hatching success of resting eggs obtained immediately after sediment incubation was lower (0.72%) than the value observed after 11 months (4.50%) with an overall hatching success of 2.37%. The marine, calanoid copepod Temora longicornis was the primary species to hatch from the eggs; however, the estuarine calanoid copepod Eurytemora affinis also hatched from resting eggs. The mean abundance of eggs found in sediment (1.42 × 106 eggs m−2) was comparable to that reported for other marine and estuarine calanoid copepods. The Seine estuary sediment had a high variability of egg abundance (between 0.14 and 8.10 × 107 eggs m−3) suggesting that the hydrodynamics of this macrotidal estuary are likely responsible for this variability. Significant sediment resuspension occurs in the Seine estuary during flood periods and spring tides leading to resting eggs to contribute along the year to the nauplii recruitment of calanoid copepods. On average, around 400,000 nauplii m−3 month−1 of the main calanoid copepods can emerge from the surface layer sediment in the Seine estuary, suggesting that resting eggs could play an important role in the population dynamics of key calanoid copepods in the Seine estuary.  相似文献   

14.
Zooplankton dynamics (community composition, juvenile somatic growth rate, adult egg production, secondary production) were studied in coastal waters of the Great Barrier Reef. Two sectors were compared, one adjacent to a catchment of near-pristine land use patterns, the other to a more intensively farmed catchment. Sampling was conducted in the austral winter (August) and summer (January–March) of two succeeding years. Gradients in zooplankton community composition were weak, with only moderate effects of season and sector. Overall, 37% of zooplankton biomass was in the 73–150 μm size fraction, 26% in the 150–350 μm fraction, and 38% was >350 μm. There was no biomass difference and only small differences in community composition between samples taken during the day and at night; ostracods and large calanoid copepods were occasionally more common at night. Carbon-specific growth rates averaged 0.29 d−1 for cyclopoid copepods and 0.35 d−1 for calanoid copepods, with no difference between sectors. Calanoid copepod growth showed a significant relationship to chlorophyll concentration, but cyclopoid copepods did not. Copepod egg production was low (7.9 ± 5.9 eggs female−1 d−1) and apparently food-limited. Copepod secondary production was lower in August (mean = 2.6, range 1.4–4.0 mg C m−2 d−1) than in January–March (mean = 8.5, range 2.4–15.5 mg C m−2 d−1). Secondary production by mesozooplankton in the 73–100 μm size range averaged 0.9% of total phytoplankton production.  相似文献   

15.
The spatial and temporal patterns in bacterial abundance, biomass, production, nanoflagellate abundance and the loss of bacterial production due to viral lysis were investigated in a temporarily open/closed estuary along the eastern seaboard of southern Africa over the period May 2006 to April 2007. Bacterial abundance, biomass and production ranged between 1.00 × 109 and 4.93 × 109 cells l−1, 32.43 and 108.59 μg C l−1 and 0.01 and 1.99 μg C l−1 h−1, respectively. With a few exceptions there were no significant spatial patterns in the values (P > 0.05). Bacterial abundance, biomass and production, however, demonstrated a distinct temporal pattern with the lowest values consistently recorded during the winter months. Bacterial dynamics showed no effect of mouth opening events. Nanoflagellate and bacterial abundances were significantly correlated to one another (P < 0.05) suggesting a strong predator-prey relationship. The frequency of visibly infected bacterial cells and the number of virus particles within each bacterial cell during the study demonstrated no significant temporal or spatial pattern (P > 0.05) and ranged from 0.5 to 6.1% and 12.0 to 37.5 virus particles per bacterium, respectively. Viral infection and lysis was thus a constant source of bacterial mortality throughout the year. The estimated percentage of bacterial production removed by viral lysis ranged between 7.8 and 88.9% (mean = 30.3%) of the total which suggests that viral lysis represents a very important source of bacterial mortality during the study.  相似文献   

16.
We present the results of six dye tracer experiments that measured the mixing and circulation at the shelfbreak front on the New England Shelf. The last three were conducted during the New England Shelfbreak Productivity Experiment (NESPEX) with concurrent isopycnal float deployments. The results are consistent with the Chapman and Lentz [Chapman, D.C., and Lentz, S.J. (1994). Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography, 24, 1465–1479.] model prediction of the separation and upwelling along the shelfbreak front of bottom boundary layer (BBL) water forced by an Ekman buoyancy flux, but show considerable variability. Cross-shelf velocities at the detachment point are 2–3 × 10−2 m/s. But seaward, over the slope region, dye tagged water was sheared from the main patch into small filaments that upwelled along the front with cross-shelf speeds up to 0.1 m/s. Cross-shelf diffusion was of order 10 m2/s in the mixed bottom layer and 1 m2/s in the interior along the front. Within the stratified front, the mean vertical diffusivity was Kz  4 × 10−6 m2/s. The dispersion of shelfwater in the slope region is effected by turbulent flow with advective speeds exceeding the small scale diffusive mixing. The mean flux of the detached BBL water is sufficient to account for the net loss of shelf water during its transit from Cape Cod to Cape Hatteras.  相似文献   

17.
Although small copepods are one of the main dietary sources for many commercially important fish, their role in the pelagic trophic dynamics has traditionally been underestimated due to the methodology commonly used in plankton sampling. Temporal variation in abundance of adults and nauplii of small copepods (particularly Oithona plumifera) in nearshore waters on the south coast of South Africa was investigated fortnightly over 14 months at site (km) and location (100 m) scales. Sampling was within <500 m of the shore, where depth was ca. 10 m, using vertical hauls of an 80-μm mesh plankton net from 1 m above the seabed to the surface. Twenty-seven adult copepod taxa were recorded, but Oithona spp. was consistently the most abundant. Taxon richness was 7–19 on each sampling occasion. There was strong temporal variation (Oithona varied between 0 and 2300 m−3), but much of this was short-term variability (e.g. between consecutive sampling sessions), with no seasonality or other long-term discernable patterns. There were periods of consistently low numbers, but very high numbers often followed samples with low abundances. Nor was there spatial structure at the location scale, though numbers differed between sites. Despite considerable variability at the location scale within sites, Kenton consistently showed higher densities than High Rocks. Separate analyses, with Bonferroni adjustment, showed that this difference was significant on eight out of 21 occasions for Oithona, six for other pelagic copepods and three for nauplii. This suggests that hydrodynamics favour aggregation of plankton at Kenton. A high degree of short-term variability, with a tendency for aggregation of small zooplankton at certain sites has implications for both pelagic processes and food-web links between the benthic and pelagic environments.  相似文献   

18.
Shear and Richardson number in a mode-water eddy   总被引:1,自引:0,他引:1  
Measurements of stratification and shear were carried out as part of the EDDIES tracer release experiment in mode-water eddy A4 during the summer of 2005. These measurements were accomplished using both shipboard instrumentation and a drifting mooring. A strong relationship between shear intensity and distance from the center of the eddy A4 was observed with the shipboard ADCP. Diapycnal diffusivity at the SF6 tracer isopycnal prior to and during the release was estimated from the drifting mooring to be 2.9×10−6 m2 s−1. Diffusivity increased by an order of magnitude to 3.2×10−5 m2 s−1 during the period of the final tracer survey in early September, which was similar to the value estimated from the tracer analysis for the whole experiment (3.5×10−5 m2 s−1, [Ledwell, J.R., McGillicuddy Jr., D.J., Anderson, L.A., 2008. Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy. Deep-Sea Research II, this issue [doi:10.1016/j.dsr2.2008.02.005]].  相似文献   

19.
Seasonal change in the downward carbon transport due to respiration and mortality through diel vertical migration (DVM) of the calanoid copepods Metridia pacifica and Metridia okhotensis was estimated in the Oyashio region, western subarctic Pacific during six cruises from June 2001 to June 2002. M. pacifica (C4, C5 and adult females) was an active migratory species throughout the year though its DVM amplitude varied among seasons and stages. The mean distribution depths of adult females during the daytime were positively related with the illumination level in the water column, being shallowest in April and deepest in January. M. okhotensis generally showed less-extensive migrations than M. pacifica. Therefore, together with their lower abundance, this species is considered to be a less-important mechanism of downward transport of carbon except for April when their DVM was more active and descended deeper than M. pacifica, which remained in the upper 150 m even during the daytime. The mean migrating biomass of the two Metridia species was 558 mg C m−2 d−1 and was high during summer to winter (263–1676 mg C m−2 d−1) and low during spring (59–63 mg C m−2 d−1). Total downward flux through DVM fluctuated between 1.0 and 20.0 mg C m−2 d−1 with an annual mean of 8.0 mg C m−2 d−1. Contribution of the respiratory flux was greater than the mortality flux and accounted for 64–98% of total migratory flux throughout the year except for January when contribution of both fluxes was equal. Overall the annual carbon transport by DVM of Metridia spp. was estimated as 3.0 g C m−2 year−1, corresponding to 15% of the annual total POC flux at 150 m at the study site, suggesting that DVM is a significant process for carbon export in the subarctic region as well as that in tropical and subtropical oceanic regions. Since DVM in M. pacifica is more active during the non-bloom season when the gravitational flux of particulate matter is low, this species plays an important role in driving the biological pump in the subarctic Pacific during summer to winter.  相似文献   

20.
An array of five buoys and three coastal stations is used to characterize the winds, stress, and curl of the wind stress over the shelf off Bodega Bay, California. The wind and wind stress are strong and persistent in the summer and weak in the winter. In the summer, wind and stress decrease strongly across the shelf, toward the coast. Combinations of buoys are used to compute the curl of the wind stress over different portions of the shelf. The mean summer 2001 curl of the wind stress over the array depends upon the area selected, varying between −1.32×10−6 and +7.80×10−6 Pa m−1. The winter 2002 wind-stress curl also depends on location, varying from −2.06×10−6 to +2.78×10−6 Pa m−1. Mean monthly curl of the wind stress is a maximum in the summer and a minimum near zero in the winter. In both the summer and the winter, the correlation between the wind-stress curl for different portions of the shelf varies between moderate negative, though insignificance, to high positive. A wind measurement at a single point can be poorly related to the measured curl of the wind stress at other locations over the shelf. The measurements show that the use of one wind measurement to characterize the curl of the wind stress over the shelf without further investigation of the local wind-stress curl structure is risky.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号