首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New whole-rock major and trace elements data, zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb ages, and zircon Hf isotope compositions were analysed for Early Cretaceous volcanic rocks, also called Meiriqieco Formation (MF) in the Duobuzha area of the Southern Qiangtang–Baoshan Block (SQBB), northern Tibet. Our aim is to clarify their petrogenesis and tectonic setting, and constrain the evolution process on the northern margin of Bangong–Nujiang suture zone (BNSZ) during Early Cretaceous time. The MF volcanic rocks are mainly composed of andesites with subordinate basalts and rhyolites with high-K calc-alkaline affinity. Zircon LA-ICP-MS U–Pb dating for two andesite and one rhyolite samples give uniform ages within error of ca.113, 114, and 118 Ma, respectively, indicating they were erupted on the Early Cretaceous. The MF andesites have variable zircon εHf(t) values (+0.5 to +10.5), which is different from those of MF rhyolites (+7.9 to +10.7). All the MF rocks are enriched in large ion lithophile elements, and depleted in high field strength elements, yielding the affinity of arc rocks. The MF basalts were most likely derived from the mantle wedge that was metasomatized by fluids released from subducting slab with the involvement of subducted sediments. The MF rhyolites were generated by partial melting of the juvenile mafic lower crust. The MF andesites are interpreted to have formed by mixing of the magmas that parental of the MF basalts and the MF rhyolites. In addition, a couple of distinctly magmatic sources are identified in the SQBB, and this may be related to mantle components injected into the continental crust. Combined with published geological data in the BNSZ and SQBB, we consider that the MF volcanic rocks are formed in a continental arc setting, suggesting that BNO were subducting during the Early Cretaceous time in the Duobuzha area.  相似文献   

2.
Khromykh  S. V.  Semenova  D. V.  Kotler  P. D.  Gurova  A. V.  Mikheev  E. I.  Perfilova  A. A. 《Geotectonics》2020,54(4):510-528

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

  相似文献   

3.
An 40Ar/39Ar age of 45·1 Ma determined for lavas fromnorthern Saipan confirms that these high-silica rhyolites eruptedduring the ‘proto-arc’ stage of volcanism in theIzu–Bonin–Mariana system, which is characterizedelsewhere by eruption of boninitic lavas. Incompatible traceelement concentrations and Sr, Hf, Nd, and Pb isotope ratiosfor these rhyolites are transitional between those of c. 48Ma boninitic lavas and post-38 Ma ‘first-arc’ andesitesand dacites from Saipan and Rota that have typical subduction-relatedcompositions. These transitional compositions are modeled bycrystal fractionation of parental tholeiitic basalt combinedwith assimilation of young boninitic crust. A second stage ofRayleigh fractionation in the upper crust is required by SiO2concentrations that exceed 77 wt % and near-zero compatibleelement concentrations. First-arc magma compositions are consistentwith fractionation of basalt and assimilation of crust similarin composition to the first-arc magmas themselves. The mantlesources of the proto-arc and first-arc lavas from Saipan andRota are similar to those of Philippine back-arc basin basaltsbased on Nd and Hf isotopic compositions. The Pb isotope compositionsof these lavas are between those of Pacific sea-floor basaltsand Jurassic and younger cherty and clay-rich sediments. Thiscontrasts with the boninitic proto-arc volcanic rocks from Guamand Deep Sea Drilling Project Sites 458 and 459 that have Pbisotope compositions similar to Pacific basin basalts and volcaniclasticsediments. The preferred explanation for the difference in thenature of proto-arc volcanism between Saipan and other fore-arclocations is that the crust ceased extending 3–4 Myr earlierbeneath Saipan. This was caused by a change from mantle upwelling,fore-arc extension, and shallow melting to an environment dominatedby more normal mantle wedge convection, stable crust, and deepermelting. KEY WORDS: rhyolite; andesite; Mariana arc; isotope ratios; trace elements  相似文献   

4.
The Pliocene–Pleistocene northern Taiwan volcanic zone (NTVZ) is located within a trench-arc–back-arc basin and oblique arc–continent collision zone. Consequently the origin and tectonic setting of the andesitic rocks within the NTVZ and their relation to other circum-Pacific volcanic island-arc systems is uncertain. Rocks collected from the Tatun volcanic group (TTVG) include basaltic to andesitic rocks. The basalt is compositionally similar to within-plate continental tholeiites whereas the basaltic andesite and andesite are calc-alkaline; however, all rocks show a distinct depletion of Nb-Ta in their normalized incompatible element diagrams. The Sr-Nd isotope compositions of the TTVG rocks are very similar and have a relatively restricted range (i.e. ISr = 0.70417–0.70488; εNd(T) = +2.2 to +3.1), suggesting that they are derived directly or indirectly from the same mantle source. The basalts are likely derived by mixing between melts from the asthenosphere and a subduction-modified subcontinental lithospheric mantle (SCLM) source, whereas the basaltic andesites may be derived by partial melting of pyroxenitic lenses within the SCLM and mixing with asthenospheric melts. MELTS modelling using a starting composition equal to the most primitive basaltic andesite, shallow-pressure (i.e. ≤1 kbar), oxidizing conditions (i.e. FMQ +1), and near water saturation will produce compositions similar to the andesites observed in this study. Petrological modelling and the Sr-Nd isotope results indicate that the volcanic rocks from TTVG, including the spatially and temporally associated Kuanyinshan volcanic rocks, are derived from the same mantle source and that the andesites are the product of fractional crystallization of a parental magma similar in composition to the basaltic andesites. Furthermore, our results indicate that, in some cases, calc-alkaline andesites may be generated by crystal fractionation of mafic magmas derived in an extensional back-arc setting rather than a subduction zone setting.  相似文献   

5.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   

6.
The volcanic Rooiberg Group represents the earliest phase of Bushveld-related magmatism and comprises, in some areas, the floor and roof rocks of the mafic-ultramafic intrusive units of the Bushveld Complex. The lower to middle Dullstroom Formation is composed of two interbedded series of low Ti and high Ti volcanic strata, which are predominantly basaltic andesites. Volcanic units above these strata range from andesites to dacites in the upper Dullstroom Formation and to predominantly rhyolites in the overlying Damwal and Kwaggasnek Formations. Compositional data suggest that these intermediate to siliceous volcanic rocks are petrogenetically related to the low Ti volcanic suite and suggest that the low Ti magmas resided in a shallow magma chamber where they experienced fractional crystallization and assimilation of crustal material. In contrast, the high Ti volcanic suite is petrogenetically unrelated. These data confirm previous suggestions that Bushveld-related magmas experienced significant amounts of assimilation of continental crust.  相似文献   

7.
西乡群孙家河组为一套低绿片岩相浅变质火山-沉积岩系,主要由基性-中基性-酸性火山岩和凝灰岩、沉凝灰岩、泥岩、硅质岩组成,火山岩岩石类型包括玄武岩、安山岩、英安岩和流纹岩.LA-ICPMS锆石U-Pb定年揭示流纹岩形成时代为832.9±4.9Ma,辉石玄武岩的形成时代为845.0±17Ma,两者在误差范围内一致,属新元古代同期岩浆作用产物.元素地球化学研究表明,孙家河组玄武岩属拉斑玄武岩系列,具有受地壳混染的板内玄武岩的地球化学特点.玄武岩-安山岩-英安岩主量元素成分投点呈规律性变化、REE球粒陨石标准化及微量元素原始地幔标准化分配型式具有一致性并相互重叠,不相容元素Th和相容元素Cr相关模拟图中沿分离结晶线分布,证明玄武岩-安山岩-英安岩为同一基性岩浆分离结晶的产物.REE和微量元素分配型式以及微量元素比值对的显著差异,暗示流纹岩与玄武岩-安山岩-英安岩来源于不同源区.Sr-Nd同位素研究表明,玄武岩-安山岩-英安岩样品的ε_(Nd)(t)值均大于0以及在ε_(Nd)(t)-(~(87)Sr/~(86)Sr)_t图解中位于OIB成分区,表明其源区应为与洋岛玄武岩类似的地幔源区;流纹岩样品具有可与基性熔岩相比拟的ε_(Nd)(t)值,暗示流纹岩最有可能是初生玄武质地壳部分熔融而成.本文所研究的原划孙家河组火山岩系列的形成时代、构造环境的确定以及扬子陆块乃至世界上同一时间内普遍发育大陆裂谷岩浆岩组合的地质事实,说明原划孙家河组以及西乡群中的确存在新元古代的组成部分,它们应是新元古代大陆裂谷的产物,它和扬子地块820M8后造山裂解环境花岗岩均是新元古代晚期Rodinia超大陆裂解作用的岩浆响应.  相似文献   

8.
大兴安岭南段晚中生代双峰式火山作用   总被引:52,自引:24,他引:52  
郭锋  范蔚茗等 《岩石学报》2001,17(1):161-168
大兴安岭南段晚中生代克头鄂博组山岩表现出双峰式特征,主要由玄武质安山岩、英安岩和流纹岩组成。基性火山岩属于代钾拉斑系列,轻微富集LREE,Eu异常不明显(Eu/Eu=0.99-1.04)和HREE无明显分馏的特征(Dy/YbcN=1.030-1.089);富集大离子亲石元素(LILE)而亏损高场强元素(HFSE),尤其是强烈亏损Nb,Ta。英安岩和流纹岩为钙碱性系列,在REE配分模式上为LREE富集型,其中英安岩为Eu弱负异常(Eu/Eu=0.81-1.01),流纹岩的Eu负异常明显(Eu^*/Eu=0.65-0.76);在微量元素蛛网图上,英安岩类似于基性火山岩,流纹岩除了具LILE富集和HFSE亏损特征外,还显示出Sr,P,Ti等元素的强烈亏损,可能与岩浆演化过程中斜长石、磷灰石的分离结晶作用相关。晚中生代双峰式火山岩分离结晶的结果。流纹岩表现出较高的La/Sm比值和很高的K/P、K/Ti比值,其成因可能与地壳混染作用或与大陆中、下地壳重熔作用有关。结合区域晚中生代盆岭构造格局特征、大兴安岭南段晚中生代双峰式火山岩形成于造山后阶段,是岩石圈快速伸展体制下导致受早期流体交代的岩石圈地幔发生减压部分熔融作用的产物。  相似文献   

9.
Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene‐Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4–1.0 Ma) and Shishimano (1.7–0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction‐related arc volcanic rocks. Modal and whole‐rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so‐called EMI‐type Sr‐Nd and DUPAL anomaly‐like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high‐alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component.  相似文献   

10.
内蒙古西乌旗地区发育一套中酸性火山岩,空间展布特征显示其为大石寨组火山岩的西延部分。为查明该火山岩的形成时代及构造属性,对其进行了岩石学、年代学和岩石地球化学研究。研究结果表明该火山岩主要由安山岩及流纹岩组成。锆石LA-MC-ICP-MS U-Pb定年结果显示其喷发时代为275~311 Ma,属晚石炭世–早二叠世。岩石地球化学特征表明中性岩富钙贫镁,富集LREE及K、Rb、Ba,亏损Nb、Ta,具有弱Eu异常,安山质岩浆可能是由基性岩浆分离结晶形成的,但在形成过程中受到了陆壳物质混染。酸性岩贫钙镁,富硅碱,具有显著的Eu负异常,亏损Nb、Ta、Sr、P、Ti,反映岩石成因与中下地壳的熔融及其后期的分离作用有关。在构造判别图解中,中性岩具有板内玄武岩特征,而酸性岩具有A2型花岗岩特征。结合区域已发表资料推断,西乌旗大石寨组火山岩形成于造山后伸展环境,暗示古亚洲洋至少在早二叠世之前已经闭合。  相似文献   

11.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

12.
Over the last ~267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest ≤30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An38–21 plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require ~2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50–1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world.  相似文献   

13.
Young rhyolites and associated lavas and magmatic enclaves fromthe Katmai–Novarupta volcanic system (Alaskan Peninsula),and the Crater Lake and Medicine Lake volcanic system (Cascades)were analyzed for U and Th isotope abundances, as well as majorand trace element concentrations, to investigate the time-scalesof the processes that lead to rhyolite generation in continentalarcs. Basalts and basaltic andesites typically migrate fromthe mantle to the surface within several thousand years. Variationsin (230Th)/(232Th) and (238U)/(232Th) ratios with SiO2 concentrationsin intermediate lavas appear to result from crystal fractionationcombined with assimilation of recently crystallized magmas.These data also suggest that  相似文献   

14.
赤峰地区晚中生代火山岩锆石U-Pb年代学及地球化学特征   总被引:1,自引:0,他引:1  
内蒙古赤峰地区发育大面积的晚中生代火山岩,是我国东部巨型火山岩带的重要组成部分。锆石U-Pb定年结果显示,火山岩主要形成于晚侏罗世160~147 Ma和早白垩世132~129 Ma两个时期,早期以中酸性火山岩为主,晚期主要为酸性火山岩,局部夹少量的基性火山岩。晚侏罗世早期的安山岩SiO_2含量较低,MgO含量较高,可能是岩石圈地幔部分熔融的产物,流纹岩是安山质熔浆底侵导致下地壳发生部分熔融的产物。晚侏罗世晚期的流纹岩具有与A型花岗岩相似的地球化学特征,表明其形成于伸展构造背景下。早白垩世晚期的流纹岩属于钾玄岩系列,与同时代的玄武岩构成双峰式岩石组合,流纹岩来源于地壳的部分熔融。结合前人研究成果,认为赤峰地区晚中生代的两期火山活动都与蒙古–鄂霍次克缝合带的演化有关,它们分别形成于两次陆壳加厚之后的陆内伸展环境。  相似文献   

15.
徐剑南  马昌前  尹烁  王连训  顿新海 《地球科学》2017,42(12):2282-2298
罗迪尼亚超大陆的裂解及与之相关的吉尼奥德玢岩型铁矿的形成是目前研究的热点,对安山岩锆石进行了U-Pb年龄、Hf同位素和微量元素分析.所有锆石都属岩浆成因,具有一致的稀土配分型式以及明显的Ce正异常、Eu负异常和重稀土元素富集特征.锆石年龄主要分为两组,分别为947.8±4.0 Ma和883.0±5.1 Ma,代表两期安山岩的成岩年龄,指示安山岩为两期岩浆活动的混合产物;此外,捕获的基底锆石年龄为1 523.0±66 Ma,属于中元古代.εHf(t)值变化范围较大(-4.67~+13.10),指示其为壳幔物质混合的产物.安山岩产生于罗迪尼亚超大陆时期,是由高温幔源岩浆通过底侵作用,使得中元古代花岗质岩石组成的下地壳发生熔融,壳幔熔体混合形成的,与伸展裂谷有关的构造热事件及地幔柱的活动有着密切关系.吉尼奥德铁矿与凯特里铜矿在成矿地质背景方面具有诸多相似性,暗示其有大型IOCG型矿床的成矿潜力.在960~880 Ma期间,印度板块西北部与华北-刚果-圣弗朗西斯科板块可能连接在一起.   相似文献   

16.
中国东北二连盆地周缘分布有三组时代不同的晚中生代火山岩,其中早、中期为两套地球化学性质不同的流纹岩,晚期为玄武质火山岩。本文通过测定火山岩基质Ar-Ar同位素年龄,表明早期查干诺尔组流纹岩形成于142Ma,晚期不拉根哈达组基性火山岩形成于129Ma,可见二连盆地北缘晚中生代火山岩时代均为早白垩世。通过对主、微量元素地球化学特征和Sr-Nd-Pb同位素组成研究,以及与邻区同期满克头鄂博组英安岩和流纹岩、玛尼吐组英安岩、霍林河地区查干诺尔组英安岩、流纹岩对比,认为早期查干诺尔组流纹岩来源于新成下地壳,岩浆演化过程经历了强烈分异作用;中期流纹岩源区为中上地壳或下地壳岩浆经历了上地壳强烈同化混染作用;晚期不拉根哈达组基性火山岩则源于受俯冲洋壳流体交代的富集岩石圈地幔。结合早白垩世区域岩石圈减薄背景,本文认为研究区早白垩世火山岩形成于陆内伸展构造环境。  相似文献   

17.
东天山石炭纪企鹅山群火山岩岩石成因   总被引:13,自引:1,他引:12  
土屋矿区南北大沟企鹅山群火山岩的岩石地球化学研究表明:东天山企鹅山群火山岩主要为拉斑系列,少量为钙碱系列;岩石类型为玄武岩、玄武安山岩、英安岩和流纹岩。稀土、微量元素和Sr、Nd同位素特点揭示:该火山岩系形成于大陆裂谷环境;其源区主要为软流圈地幔,同时有岩石圈地幔源组分卷入,酸性岩浆是玄武质岩浆结晶分异的产物。  相似文献   

18.
B. Mocek   《Lithos》2001,57(4):263-289
Blueschists, eclogites, chlorite–actinolite rocks and jadeite-gneisses of the blueschist unit of Siphnos have been investigated for their geochemical composition. Their protolith nature is characterised and a geodynamic model for the pre-metamorphic evolution of these metavolcanic rocks is proposed on the basis of immobile elements, especially trace elements and rare earth elements (REE).

The protoliths of the eclogites are characterised as calc-alkaline basalts, andesites and Fe-rich tholeiites evolving in an island-arc setting. Trace element data indicate that subducted marine sediments were assimilated in the magma chamber, enriching the protoliths in LILE and Pb. Produced in the early stage of back-arc basin opening, a protolith with affinities to both island-arc and MORB formed the precursor of the chlorite–actinolite rocks. They were created by low degrees of partial melting of very primitive magmas, akin to spinel-peridotites and have affinities to boninites, probably through melting of the peridotitic mantle wedge. Tholeiitic basalts and andesites with N-MORB affinity, especially in their REE-patterns, were then produced by partial melting, possibly in an embryonic back-arc basin. These rocks were the protoliths of the blueschists of Siphnos. Their enrichment in some LILE and Pb indicates a N-MORB source contaminated by marine sediments, probably shales or other Pb-rich sediments. Because the jadeite-gneisses show affinities to MOR-granites and volcanic arc granites, intrusion of their protoliths in a back-arc environment is likely. The protoliths of the quartz-jadeite gneisses are rhyodacites/dacites and rhyolites, those of the glaucophane-jadeite gneisses were andesites.

The proposed geodynamic model, solely based on geochemical data, is consistent with geochemical data from neighbouring islands, though those rock units show much higher chemical variability. Consistent with geotectonic models, which are based on structural and geophysical data, the volcanic protoliths of the Siphnos blueschist unit reflect the transition from subduction to spreading environment and record in detail: subduction, formation of an island-arc, and the evolution of a back-arc basin.  相似文献   


19.
Abundance data for Cs, Rb, Tl, Ba, Pb, Sr, the rare earths, Th, U, Zr, Hf, Sn, Nb, Mo, Mn, Cu, Co, Ni, Sc, V, Cr, Ag, Sb and the major elements are reported for two andesites and a dacite from Saipan, nine andesites and a dacite from Bougainville and two andesites from Fiji. The Saipan rocks are low-K varieties and contain notably low abundances of Rb, Ba, Th and U and have rare earth patterns subparallel to chondritic patterns. The Bougainville andesites include low-Si and high-K varieties which have higher concentrations of the large cations. The Fijian samples are close to the average circum-Pacific andesite and have rareearth patterns sub-parallel to those of sedimentary rocks.All the andesites contain characteristically low (< 20 ppm) values for Ni and have Ni/Co ratios < 1, and V/Ni ratios > 10.These data preclude derivation of calc-alkaline rocks by mixing of upper crustal material or by fractional crystallisation from basaltic parents. A two stage model is proposed involving sea-floor spreading and transportation of the oceanic crust down the dipping seismic plane into the mantle where it is remelted to form andesites.  相似文献   

20.
The Neoproterozoic Wadi Ranga metavolcanic rocks, South Eastern Desert of Egypt, constitute a slightly metamorphosed bimodal sequence of low-K submarine tholeiitic mafic and felsic volcanic rocks. The mafic volcanic rocks are represented by massive and pillow flows and agglomerates, composed of porphyritic and aphyric basalts and basaltic andesites that are mostly amygdaloidal. The felsic volcanic rocks embrace porphyritic dacites and rhyolites and tuffs, which overlie the mafic volcanic rocks. The geochemical characteristics of Wadi Ranga volcanic rocks, especially a strong Nb depletion, indicate that they were formed from subduction-related melts. The clinopyroxene phenocrysts of basalts are more akin to those crystallizing from island-arc tholeiitic magmas. The tholeiitic nature of the Wadi Ranga volcanics as well as their LREE-depleted or nearly flat REE patterns and their low K2O contents suggest that they were developed in an immature island arc setting. The subchondritic Nb/Ta ratios (with the lowest ratio reported for any arc rocks) and low Nb/Yb ratios indicate that the mantle source of the Wadi Ranga mafic volcanic rocks was more depleted than N-MORB-source mantle. Subduction signature was dominated by aqueous fluids derived from slab dehydration, whereas the role of subducted sediments in mantle-wedge metasomatization was subordinate, implying that the subduction system was sediment-starved and far from continental clastic input. The amount of slab-derived fluids was enough to produce hydrous magmas that follow the tholeiitic but not the calc-alkaline differentiation trend. With Mg# > 64, few samples of Wadi Ranga mafic volcanic rocks are similar to primitive arc magmas, whereas the other samples have clearly experienced considerable fractional crystallization.The low abundances of trace elements, together with low K2O contents of the felsic metavolcanic rocks indicate that they were erupted in a primitive island arc setting. The felsic volcanic rocks are characterized by lower K/Rb ratios compared to the mafic volcanic rocks, higher trace element abundances (~ 2 to ~ 9 times basalt) on primitive arc basalt-normalized pattern and nearly flat chondrite-normalized REE patterns, which display a negative Eu anomaly. These features are largely consistent with fractional crystallization model for the origin of the felsic volcanic rocks. Moreover, SiO2-REE variations for the Wadi Ranga volcanic rocks display steadily increasing LREE over the entire mafic to felsic range and enriched La abundances in the felsic lavas relative to the most mafic lavas, features which are consistent with production of the felsic volcanic rocks through fractional crystallization of basaltic melts. The relatively large volume of Wadi Ranga silicic volcanic rocks implies that significant volume of silicic magmas can be generated in immature island arcs by fractional crystallization and indicates the significant role of intra-oceanic arcs in the production of Neoproterozoic continental crust. We emphasize that the geochemical characteristics of these rocks such as their low LILE and nearly flat REE patterns can successfully discriminate them from other Egyptian Neoproterozoic felsic volcanic rocks, which have higher LILE, Zr and Nb and fractionated REE patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号